CFD是什么技术

上传人:pu****.1 文档编号:564526057 上传时间:2023-04-29 格式:DOC 页数:25 大小:723KB
返回 下载 相关 举报
CFD是什么技术_第1页
第1页 / 共25页
CFD是什么技术_第2页
第2页 / 共25页
CFD是什么技术_第3页
第3页 / 共25页
CFD是什么技术_第4页
第4页 / 共25页
CFD是什么技术_第5页
第5页 / 共25页
点击查看更多>>
资源描述

《CFD是什么技术》由会员分享,可在线阅读,更多相关《CFD是什么技术(25页珍藏版)》请在金锄头文库上搜索。

1、CFD是什么技术2008-09-10 09:42【CFD是什么技术】 CFD是英文Computational Fluid Dynamics(计算流体动力学)的简称。它是伴随着计算机技术、数值计算技术的发展而发展的。简单地说,CFD相当于虚拟地在计算机做实验,用以模拟仿真实际的流体流动情况。而其基本原理则是数值求解控制流体流动的微分方程,得出流体流动的流场在连续区域上的离散分布,从而近似模拟流体流动情况。即CFD=流体力学+热学+数值分析+计算机科学。 流体力学研究流体(气体与液体)的宏观运动与平衡,它以流体宏观模型作为基本假说。流体的运动取决于每个粒子的运动,但若求解每个粒子的运动即不可能也无

2、必要。计算流体动力学概述 1 什么是计算流体动力学 计算流体动力学(Computational Fluid Dynamics,简称CFD)是通过计算机数值计算和图像显示,对包含有流体流动和热传导等相关物理现象的系统所做的分析。CFD的基本思想可以归结为:把原来在时间域及空间域上连续的物理量的场,如速度场和压力场,用一系列有限个离散点上的变量值的集合来代替,通过一定的原则和方式建立起关于这些离散点上场变量之间关系的代数方程组,然后求解代数方程组获得场变量的近似值CFD可以看做是在流动基本方程(质量守恒方程飞动量守恒方程、能量守恒方程)控制下对流动的数值模拟。通过这种数值模拟,我们可以得到极其复杂

3、问题的流场内各个位置上的基本物理量(如速度、压力、温度、浓度等)的分布,以及这些物理量随时间的变化情况,确定旋涡分布特性、空化特性及脱流区等。还可据此算出相关的其他物理量,如旋转式流体机械的转矩、水力损失和效率等。此外,与CAD联合,还可进行结构优化设计等。CFD方法与传统的理论分析方法、实验测量方法组成了研究流体流动问题的完整体系,图1给出了表征三者之间关系的“三维”流体力学示意图理论分析方法的优点在于所得结果具有普遍性,各种影响因素清晰可见,是指导实验研究和验证新的数值计算方法的理论基础。但是,它往往要求对计算对象进行抽象和简化,才有可能得出理论解。对于非线性情况,只有少数流动才能给出解析

4、结果。 实验测量方法所得到的实验结果真实可信,它是理论分析和数值方法的基础,其重要性不容低估。然而,实验往往受到模型尺寸、流场扰动、人身安全和测量精度的限制,有时可能很难通过试验力一法得到结果。此外,实验还会遇到经费投入、人力和物力的巨大耗费及周期长等许多困难。 而CFD方法恰好克服了前面两种方法的弱点,在计算机上实现一个特定的计算。就好像在计算机上做一次物理实验。例如,机翼的绕流,通过计算并将其结果在屏幕上显示,就可以看到流场的各种细节:如激波的运动、强度,涡的生成与传播,流动的分离、表面的压力分布、受力大小及其随时间的变化等。数值模拟可以形象地再现流动情景,与做实验没有什么区别。2 计算流

5、体动力学的特点 CFD的长处是适应性强、应用面广。首先,流动问题的控制方程,般是非线性的,自变量多,计算域的几何形状和边界条件复杂,很难求得解析解,而用CFD方法则有可能找出满足工程需要的数值解;其次,可利用计算机进行各种数值试验,例如,选择不同流动参数进行物理方程中各项有效性和敏感性试验,从而进行方案比较。再者,它不受物理模型和实验模型的限制,省钱省时,有较多的灵活性,能给出详细和完整的资料,很容易模拟特殊尺寸、高温、有毒、易燃等真实条件和实验中只能接近而无法达到的理想条件。CFD也存在一定的局限性。首先,数值解法是一种离散近似的计算方法,依赖于物理上合理、数学上适用、适合于在计算机上进行计

6、算的离散的有限数学模型,且最终结果不能提供任何形式的解析表达式,只是有限个离散点上的数值解,并有一定的计算误差;第二,它不像物理模型实验一开始就能给出流动现象并定性地描述,往往需要由原体观测或物理模型试验提供某些流动参数,并需要对建立的数学模型进行验证;第三,程序的编制及资料的收集、繁理与正确利用,在很大程度上依赖于经验与技巧。此外,因数值处理方法等原因有可能导致计算结果的不真实,例如产生数值粘性和频散等伪物理效应。当然,某些缺点或局限性可通过某种方式克服或弥补,这在本书中会有相应介绍。此外,CFD囚涉及大量数值计算,因此,常需要较高的计算机软硬件配置。 CFD有自已的原理、方法和特点,数值计

7、算与理论分析、实验观测相互联系、相互促进,但不能完全替代,三者各有各的适用场合。在实际工作中,需要注意三者有机的结合,争取做到取长补短。3 计算流体动力学的应用领域 近十多年来,CFD有了很大的发展,替代了经典流体力学中的一些近似计算法和图解法:过去的一些典型教学实验,如Reynolds实验,现在完全可以借助CFD手段在计算机上实现。所有涉及流体流动、热交换、分子输运等现象的问题,凡乎都可以通过计算流体力学的方法进行分析和模拟。CFD不仅作为一个研究工具,而且还作为设计工具在水利工程、土木工程、环境工程、食品工程、海洋结构工程、工业制造等领域发挥作用。典型的应用场合及相关的工程问题包括: 水轮

8、机、风机和泵等流体机械内部的流体流动 飞机和航天飞机等飞行器的设计 汽车流线外型对性能的影响 洪水波及河口潮流计算 风载荷对高层建筑物稳定性及结构性能的影响 温室及室内的空气流动及环境分析 电子元器件的冷却 换热器性能分析及换热器片形状的选取 河流中污染物的扩散 汽车尾气对街道环境的污染 食品中细菌的运移 对这些问题的处理,过去主要借助于基本的理论分析和大量的物理模型实验,而现在大多采用CFD的方式加以分析和解决,CFD技术现己发展到完全可以分析三维粘性湍流及旋涡运动等复杂问题的程度。4 计算流体动力学的分支 经过四一十多年的发展,CFD出现了多种数值解法。这些方法之间的上要区别在于对控制方程

9、的离散方式。根据离散的原理不同,CFD大体上可分为三个分支: 有限差分法(Finite Difference Method,FDM) 有限元法(Finite Element Method,FEM) 有限体积法(Finite Volume Method,FVM) 有限差分法是应用最早、最经典的CFD方法,它将求解域划分为差分网格,用有限个网格节点代替连续的求解域,然后将偏微分方程的导数用差商代替,推导出含有离散点上有限个未知数的差分方程组。求出差分方程组的解,就是微分方程定解问题的数值近似解。它是一种直接将微分问题变为代数问题的近似数值解法。这种方法发展较早,比较成熟,较多地用于求解双曲型和抛物

10、型问题。在此基础上发展起来的方法有PIC(Particle-in-Cell)法、MAC(Marker-and-cell)法,以及由美籍华人学者陈景仁提出的有限分析法(Finite Analytic Method)等有限元法是20世纪80年代开始应用的一种数值解法,它吸收了有限差分法中离散处理的内核,又采用了变分计算中选择逼近函数对区域进行积分的合理方法。有限元法因求解速度较有限差分法和有限体积法慢,因此应用不是特别广泛。在有限元法的基础上,英国C.A.Brebbia等提出了边界元法和混合元法等方法。 有限体积法是将计算区域划分为一系列控制体积,将待解微分方程对每一个控制体积积分得出离散方程。有

11、限体积法的关键是在导出离散方程过程中,需要对界面上的被求函数本身及其导数的分布作出某种形式的假定,用有限体积法导出的离散方程可以保证具有守恒特性,而且离散方程系数物理意义明确,计算量相对较小。1980年,S.V.Patanker在其专著Numerical Heat Transfer and FluidFlow中对有限体积法作了全面的阐述。此后,该方法得到了广泛应用,是目前CFD应用最广的一种方法。当然,对这种方法的研究和扩展也在不断进行,如P.Chow提出了适用于任意多边形非结构网格的扩展有限体积法等。流体力学基础流体力学研究流体(气体与液体)的宏观运动与平衡,它以流体宏观模型作为基本假说。

12、显然,流体的运动取决于每个粒子的运动,但若求解每个粒子的运动即不可能也无必要。对于宏观问题,必须在微观与宏观之间建立一座桥梁。 流体宏观模型认为流体是由无数流体元(或称流体微团)连续地组成的(即连续介质)。所谓流体元指的是这样的小块流体:它的大小与放置在流体中的实物比较是微不足道的,但比分子的平均自由程却要大得多,它包含足够多的分子,能施行统计平均求出宏观参量,少数分子出入于流体元不会影响稳定的平均值。 另一方面,对于进行统计平均的时间也应选得足够大,使得在这段时间内,微观的性质,例如分子间的碰撞等已进行了许多次,在这段时间内进行统计平均能够得到稳定的数值。于是,从统计物理中得知,分子的物理量

13、(质量、速度、动量和能量)经过统计平均后变成了流体元的质量,速度,压力和温度等宏观物理量,分子质量、动量和能量等输运过程,经过统计平均后表现为扩散,粘性,热传导等宏观性质。 上述微观上充分大、宏观上充分小的流体元称为流体质点,将流体运动的空间看作是由流体质点连续地无空隙地充满着的假设称为连续介质假设。应该指出,有了此假设才能把一个微观问题化成宏观问题,且数学上容易处理。实验和经验也表明在一般情况下这个假设总是成立的。 但是。在某些特殊问题中,连续介质的假设也可以不成立。例如在稀薄气体力学中,分子间的距离很大,它能和物体的特征尺度比拟,这样虽然获得稳定平均值的流体元还是存在的,但是不能将它看成一

14、个质点。又如考虑激波内的气体运动,激波的尺寸与分子平均自由程同阶,激波内的流体只能看成分子而不能当作连续介质来处理了。CFD的求解过程CFD的求解过程为了进行CFD计算,用户可借助商用软件来完成所需要的任务,也可自己直接编写计算程序。两种方法的基本工作过程是相同的,无论是流动问题、传热问题,还是污染物的运移问题,无论是稳态问题,还是瞬态问题,其求解过程都可用图1表示。 如果所求解的问题是瞬态问题,则可将上图的过程理解为一个时间步的计算过程,循环这一过程求解下个时间步的解。下面对各求解步骤做一简单介绍。1 建立控制方程 建立控制方程,是求解任何问题前都必须首先进行的。一般来讲,这一步是比较简单的

15、;因为对于一般的流体流动而言,可根据流体动力学的分析直接写出其控制方程。例如,对于水流在水轮机内的流动分析问题,若假定没有热交换发生,则可直接将连续方程与动量方程作为控制方程使用。当然由于水轮机内的流动大多是处于湍流范围,因此,一般情况下,需要增加湍流方程。2 确定边界条件与初始条件 初始条件与边界条件是控制方程有确定解的前提,控制方程与相应的初始条件、边界条件的组合构成对一个物理过程完整的数学描述。 初始条件是所研究对象在过程开始时刻各个求解变量的空间分布情况。对于瞬态问题,必须给定初始条件。对于稳态问题,不需要初始条件。 边界条件是在求解区域的边界上所求解的变量或其导数随地点和时间的变化规律。对于任何问题,都需要给定边界条件。例如,在锥管内的流动,在锥管进口断面上,我们可给定速度、压力沿半径方向的分布,而在管壁上,对速度取无滑移边界条件。对于初始条件和边界条件的处理,直接影响计算结果的精度。3 划分计算网格 采用数值方法求解控制方程时,都是想办法将控制方程在空间区域上进行离散,然后求解得到的离散方程组。要想在空间域上离散控制方程,必须使用网格。现已发展出多种对各种区域进行离散以生成网格的方法统称为网格生成技术。 不同的问题采用不同数

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 建筑/环境 > 施工组织

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号