对锂离子电池正极材料与电解液相互作用的评价

上传人:枫** 文档编号:564474599 上传时间:2024-01-30 格式:DOC 页数:15 大小:737KB
返回 下载 相关 举报
对锂离子电池正极材料与电解液相互作用的评价_第1页
第1页 / 共15页
对锂离子电池正极材料与电解液相互作用的评价_第2页
第2页 / 共15页
对锂离子电池正极材料与电解液相互作用的评价_第3页
第3页 / 共15页
对锂离子电池正极材料与电解液相互作用的评价_第4页
第4页 / 共15页
对锂离子电池正极材料与电解液相互作用的评价_第5页
第5页 / 共15页
点击查看更多>>
资源描述

《对锂离子电池正极材料与电解液相互作用的评价》由会员分享,可在线阅读,更多相关《对锂离子电池正极材料与电解液相互作用的评价(15页珍藏版)》请在金锄头文库上搜索。

1、 . . . 对锂离子电池正极材料与电解液相互作用的评价摘要在本文中,我们对锂离子电池中正极材料与电解液之间相互作用的几个重要方面进行了评价。对以前的结果进行了简要的总结,介绍新的实验结果。这篇评论研究了常用的负极材料在常用的锂离子电池电解液中的稳定性(绝大多数都是基于碳酸酯溶剂)。我们在这篇文章里讨论了以下材料的表面化学性质:LiCoO2 , V2 O5 , LiMn2 O4 ,LiMn1.5 Ni0.5 O4 , LiMn0.5 Ni0.5 O2 , 和 LiFePO4。所采用的研究方法包括:采用ICP、拉曼光谱、X 射线光电子能谱和红外光谱、电子显微镜和所有相关的电化学分析技术。通常的现

2、象是过渡金属离子会从这些材料中溶解出来。还会在材料的表面形成坚硬的膜使得电极的动力学反应延缓。这些现象在高温下和电解液中含有酸性物质时表现尤为突出。含水的六氟磷酸锂溶液会生成很高浓度的酸(如氢氟酸),这对诸如钴酸锂和磷酸铁锂这样一些材料是有害的。即使使用纳米级的LiMn1.5 Ni0.5 O4 和LiMn0.5 Ni0.5 O2这两种材料,在高温下的常用电解液中也表现出很高的稳定性。这种稳定性要归功于其独特的表面化学特性,这种特性与晶格中镍离子的存在有关。关键词:正极;表面化学;阻;容量衰减;电解液。简介近年来,可充电锂离子电池系统已经成为全球电池市场的重要技术。到目前为止,这些电池是可充电电

3、池中能量密度最高的电池。虽然目前生产的锂离子电池绝大部分只是用来驱动一些小型装置如蜂窝、笔记本电脑和移动光电设备,但是全球都在努力推进技术进步,以满足更多诸如用于电动汽车的大型快充电池的应的要求。决定锂离子电池能量密度、功率密度和成本的主要因素是正极。现在大量使用的正极材料是钴酸锂,价格昂贵,实际能量密度(140mah/g)和功率密度有限,在常用的电解液(如烷基碳酸酯溶剂+ LiPF6)中存在高温稳定性问题。因此,在世界各地数百个研究小组正在全力开发用于锂离子电池的新型正极材料。现在正在开发的新型正极材料主要有LiMn2 O4 尖晶石, LiFePO4, LiMn1xy Nix Coy O2

4、, LiMn0.5 Ni0.5 O2, LiMn1.5 Ni0.5 O4 尖晶石 , LiNi1x MO2 (M = 第三种金属, Co,Al), Lix VOy, and Lix My VOz (M = 第三种金属如 Ca, Cu)。大家主要关注这些材料的可靠的合成路线、它们的结构分析与基本电化学行为。研究这些材料的科学界在使用同步辐射、X 射线辐射(原位X 射线衍射)XANES、EXAFS、高分辨率电镜/电子衍射和固态核磁共振进行结构分析方面达到了非常高的水平。所有适用于锂离子电池的正极材料都会与常用的电解液发生反应,由于表面化学的发展。有确凿的证据证明:绝大部分上述锂化过渡金属氧化物由于

5、与电解液中的组分发生自发反应都会形成表面包覆膜。因此,大多数正极材料的电化学行为主要取决于它们在电解液中的表面化学行为和诸如表面膜生成这样一些现象。和锂与锂碳负极一样,许多类型的锂离子电池正极也可以看做是SEI 电极(如包覆了锂离子传导界面)。在正极材料(锂化过渡金属氧化物)与碳酸酯溶剂与锂盐如六氟磷酸锂组成的电解液之间可能会发生许多反应。这些反应包括正极材料与痕量氢氟酸不可避免的存在于六氟磷酸锂电解液中之间发生的酸碱反应,过渡金属氧化物的氧离子与亲电子的碳酸烷基酯分子之间的亲核反应(nucleophilic attack),环链的烷基碳酸酯通过表面诱导聚合反应生成聚碳酸酯,与溶剂发生氧化还原

6、反应(氧化还原过程可能会改变过渡金属的氧化价态,并且溶解过渡金属离子到电解液中)。和正极材料所进行的大量分析的精度相比,要对于其表面材料分析较困难,因为所形成的表面膜很薄,其成分和结构会受到电解液中的杂质(即使是在PPM 级)严重影响。本文介绍了与几种感兴趣的正极材料有关的表面化学方面的最新研究成果。这些材料包括LiCoO2, LiMn1.5 Ni0.5 O4, LiMn0.5 Ni0.5 O2, Lix V2 O5, 和橄榄石磷酸铁锂。我们结合了表面分析技术如红外光谱、拉曼光谱、X 射线衍射、电镜和大量分析技术(ICP,XRD)和电化学分析法(伏安法、计时电势分析法、阻抗谱)。还研究了粒度大

7、小对它们反应的影响。实验所用的钴酸锂是商业产品(OMG 公司,粒径几个微米)。LiMn1.5 Ni0.5 O4(尖晶石结构粒径2-3 微米)粉末从LG 化学获得。LiNi0.5 M0.5 O2(粒径几个微米)粉末用氢氧化锂、锰和醋酸镍按照公开的文献先进行溶解反应,接下来进行固态/高温焙烧合成。LiNi0.5 M0.5 O2 和 LiMn1.5 Ni0.5 O2 纳米粒子由Kovacheva 和他的同事通过自燃烧反应改性合成。三个磷酸铁锂橄榄石样品按下列工艺合成:1. 用溶胶凝胶法按化学计量比将Li3 PO4(磷酸锂) , H3 PO4(磷酸) , 和 FeC6H5 O72H2 O(柠檬酸铁)在

8、氩气保护下于600 度保持15 小时生产磷酸铁锂(标记为1 号样品),接下来,用7%的氢氮混合气体于600 度处理1 小时。最终的产品含有3%的碳。用X 射线衍射分析,除碳以外磷酸铁锂是纯相的没有检出磷化铁和其他杂质。2. 通过球磨化学计量比的草酸亚铁、磷酸二氢铵和碳酸锂生产“固相法”磷酸铁锂(标记为样品2),接下来在600 度将混合物烧结12 小时,然后在700 度温度下通7%的氢氮混合气体。通过元素分析、热重分析和X 射线衍射分析确定最终产品含3%的碳、表面FeP 和/或 Fe2 P。磷化物的含量估计小于5%。3. “水热法”磷酸铁锂(标记为3 号样品),由磷酸、硫酸亚铁铵、氢氧化锂和抗坏

9、血酸在190 度温度下于反应釜保持15 小时合成。固相产物在氩气保护下于600 度烧结6 小时。该材料中含有微量的Fe2 P2 O7 和1.8%的碳。薄膜五氧化二钒电极是在高真空下用高压电离工艺将小球状的五氧化二钒溅射到惰性金属集流体上(如金箔)来生产,也可以用纳米五氧化二钒来组成复合电极。后者是分两步来生产的:首先用RAPET 法合成碳包覆三氧化二钒纳米颗粒,接下来在空气中加热到400 度,生成部分包覆碳薄膜层的五氧化二钒。通常,研究了两种类型的电极:1. 复合电极由活性物质(约80%的重量),炭黑和PVDF(各10%的重量)涂覆在铝箔集流体上。2. 无粘接剂电极,活性物质通过压力嵌入到铝箔

10、集流体。复合电极的制备已经进行了详细说明。所用的的电解液包括高酸锂和六氟磷酸锂与EC-DMC 或者 EC-EMC 的混合物(默克公司和富山公司生产,锂离子电池级)。我们也使用了蓄意用水污染的六氟磷酸锂电解液(含水量高达800ppm)。温度围包括25-80 摄氏度(使用合适的恒温箱)。所用的技术和仪器包括:乔宾依曼公司生产的ICP 和拉曼光谱仪,尼科来公司生产的透射和反射模式变换红外光谱仪(Magna 860 型),克拉托斯公司生产的XSP 分析仪( AXIS)。X 射线衍射由布鲁克D8 型先进粉末衍射仪用标准的布拉格-布伦塔诺几何与衍射仪辐射( = 1.5406 A )模式测定。数据从10 度

11、到70 度以2收集。若尔公司生产的扫描电镜(JMS-840)。标准的电化学技术(伏安法、电化学阻抗谱,计时电势分析法),所用装置来自Maccor, Arbin, Solatron, 和 Eco Chemie 公司。结果与讨论1. 在电解液中负极的稳定性与锂离子电池相关的电解液的负极稳定性通常是由溶剂决定的而不是由常用的锂盐决定的。根据其电化学氧化的稳定性可以分为三种体系:1. 体系包含有COC 醚键,包括ethe- real 溶液和基于聚醚与其衍生物的聚合物电解质。由于醚键固有的有限的负极稳定性它们在4V 以下对Li/Li+就会发生氧化。2. 电解液由诸如有机酯或者烷基碳酸酯的溶剂和含有烷基碳

12、酸酯的凝胶体系(如:诸如PVDF 衍生物的聚合物或者与锂盐、烷基碳酸酯混合在一起的聚丙烯晴)。这些电解溶剂的电化学窗口电压明显高于4.5-5 伏。3. 离子液体如咪唑(imidazolium)的衍生物或者吡咯鎓盐,表现出很高的阳极稳定性,对Li/Li+的氧化电位大于5V。对这些与锂离子电池相关的电解液体系人们越来越有兴趣。可是,要进入实用仍然存在很大问题。因此,对锂离子电池而言,最重要的电解液体系是基于烷基碳酸酯溶剂的电解液,这显然能够匹配高电压的正极材料(对Li/Li+的电极电位高达5V)并且能够获得合理的低温性能。可是,对烷基碳酸酯基电解液与金属电极的电化学行为进行严格的研究,包括采用原位

13、红外光谱和EQCM,揭示出当电位高于3.5 伏时(Li/Li+ )烷基碳酸酯溶剂在铂电极和金电极上会发生氧化。用原位红外光谱仪、核磁共振和气质联用仪确定的反应产物有一氧化碳、二氧化碳和酯、醛和羟基等有机物。对这些氧化过程的电位研究表明其动力学是非常缓慢上升到4.5 V (Li/Li+) ,因为只有很小的电流密度可以测到。当对Li/Li+的电位大于4.5 伏时,可以观测到烷基碳酸酯开始明显氧化。由于锂离子电池的工作电压有可能高到5 伏并需要承受几百次充放电循环,很明显,烷基碳酸酯溶剂基电解液大规模的氧化过程很大程度上限制了大多数(当然不是全部)在锂离子电池上使用的正极材料。但是,如上所述,在3.

14、5 伏是烷基碳酸酯发生的小规模的氧化过程可能会影响正极的表面化学反应与其可能的钝化过程。钴酸锂电极的表面化学反应钴酸锂电极有两个水平级的性能表现。在具有相当低的酸性污染物的标准六氟磷酸锂电解液中(电极活性物质和溶剂的体积比很高),钴酸锂电极在60 度以上温度能够循环良好。另一方面,在含有酸性污染物的电解液中(如六氟磷酸锂电解液中的氢氟酸,含水量的电解液)如图一(a 和b)所示钴酸锂电极会快速衰减(停止工作)。此外,在60 度对由钴酸锂正极、中间相碳微球负极、六氟磷酸锂电解液制成的全电池进行循环测试,测试结果清楚表明容量衰减的原因如图1C 所示是中间相碳微球负极。将无粘接剂的钴酸锂电极和钴酸锂复

15、合电极于60 度温度下放置在EC-DMC 混合溶剂、标准的六氟磷酸锂电解液和被水污染含水量高达800ppm 的六氟磷酸锂电解液中。然后用ICP 分析溶液中钴离子的浓度,同时用拉曼光谱、X 射线衍射和电子显微镜分析钴酸锂粉末,主要结果总结如下:1、 我们没有检测到在无盐溶剂混合物中钴的溶解。2、 钴溶解发生在六氟磷酸锂电解液中,在含水量高的电解液中特别明显。温度钴离子的溶解影响非常大(随著温度的升高而增加)。3、 在由钴酸锂和PVDF 组成的复合电极中,钴的溶解最为明显。这是非常重要的结果:从嵌入铝箔的钴酸锂粒子组成的电极或者储存在电解液里的钴酸锂粉末(即使含有PVDF 粉末)溶解的钴离子远远低

16、于由钴酸锂与PVDF 物理结合的复合电极中溶解出的钴离子。图1、钴酸锂的电极组成与循环性能:a) “厚” 电极(钴酸锂活性物质13mg)扣式电池(右边的插页表明电极的组成)b) “薄”电极(钴酸锂活性物质1mg)在量产电池中全电池钴酸锂/MCMB(中间相碳微球)+MCF 和两个半电池:MCMB+MCF/锂和钴酸锂/锂以C/8 测试。电解液组成:一1M LiPF6 溶剂为EC/EMC 1:2.图2 所示为以下电极的拉曼光谱:原始的钴酸锂电极;储存在EC/EMC/六氟磷酸锂电解液同时含有PVDF 的钴酸锂粉末;一个由钴酸锂和铝箔组成的但不含PVDF 的电极;一个由钴酸锂/炭黑/PVDF/铝箔组成的复合电极于60 度储存在EC-DMC/LiPF6 电解液中。从钴酸锂粉末或者钴酸锂/铝箔电极在储存后测得的拉曼光谱与纯钴酸锂电极的一样。可是,从储存后的复合电极测得的拉曼光谱清楚的

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 商业/管理/HR > 商业计划书

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号