P型和N型半导体

上传人:鲁** 文档编号:564441417 上传时间:2022-08-15 格式:DOC 页数:22 大小:206.50KB
返回 下载 相关 举报
P型和N型半导体_第1页
第1页 / 共22页
P型和N型半导体_第2页
第2页 / 共22页
P型和N型半导体_第3页
第3页 / 共22页
P型和N型半导体_第4页
第4页 / 共22页
P型和N型半导体_第5页
第5页 / 共22页
点击查看更多>>
资源描述

《P型和N型半导体》由会员分享,可在线阅读,更多相关《P型和N型半导体(22页珍藏版)》请在金锄头文库上搜索。

1、 .wd.P型和N型半导体如果杂质是周期表中第族中的一种元素受主杂质,例如硼或铟,它们的价电子带都只有三个电子,并且它们传导带的最小能级低于第族元素的传导电子能级。因此电子能够更容易地由锗或硅的价电子带跃迁到硼或铟的传导带。在这个过程中,由于失去了电子而产生了一个正离子,因为这对于其它电子而言是个“空位,所以通常把它叫做“空穴,而这种材料被称为“P型半导体。在这样的材料中传导主要是由带正电的空穴引起的,因而在这种情况下电子是“少数载流子。如图1所示。N型半导体如果掺入的杂质是周期表第V族中的某种元素施主杂质,例如砷或锑,这些元素的价电子带都有五个电子,然而,杂质元素价电子的最大能级大于锗或硅的

2、最大能级,因此电子很容易从这个能级进入第族元素的传导带。这些材料就变成了半导体。因为传导性是由于有多余的负离子引起的,所以称为“N型。也有些材料的传导性是由于材料中有多余的正离子,但主要还是由于有大量的电子引起的,因而在N型材料中电子被称为“多数载流子。如图2所示。 P型和N型半导体的应用由P型半导体或N型半导体单体构成的产品有热敏电阻器、压敏电阻器等电阻体。由P型与N型半导体结合而构成的单结半导体元件,最常见的是二极管;此外,FET也是单结元件。PNP或NPN以及形成双结的半导体就是晶体管。 1用于LED LED在20世纪60年代诞生后就被认定是荧光灯管、灯泡等照明设备的终结者,甚至有人认为

3、LED将会开创一个新的照明时代,最终出现在所有需要照明的场合。LED的工作原理和我们常见的白炽灯、荧光灯完全不同,LED从本质上来说是一种半导体器件。 LED的核心局部是由P型半导体和N型半导体组成的晶片,在P型半导体和N型半导体的交界面就会出现一个具有特殊导电性能的薄层,也就是常说的PN结(PN Junction Transistors)。PN结可以对P型半导体和N型半导体中多数载流子的扩散运动产生阻力,当对PN结施加正向电压时,电流从LED的阳极流向阴极,而在PN结中少数载流子与多数载流子进展复合,多余的能量就会转变成光而释放出来。LED正是根据这样的原理实现电光的转换。根据半导体材料物理

4、性能的不同,LED可发出从紫外到红外不同波段、不同颜色的光线。 小知识:P型半导体和N型半导体 如果在硅或锗等半导体材料中参加微量的硼、铟、镓或铝等三价元素,就变成以空穴导电为主的半导体,即P型半导体。在P型半导体中,空穴(带正电)叫多数载流子;电子(带负电)叫少数载流子。 如果在硅或锗等半导体材料中参加微量的磷、锑、砷等五价元素,就变成以电子导电为主的半导体,即N型半导体。在N型半导体中,电子(带负电)叫多数载流子;空穴(带正电)叫少数载流子。 2在半导体热电偶中的应用 热电制冷是热电效应主要是珀尔帖效应在制冷技术方面的应用。实用的热电制冷装置是由热电效应比拟显著、热电制冷效率比拟高的半导体

5、热电偶构成的。 半导体热电偶由N型半导体和P型半导体组成。N 型材料有多余的电子,有负温差电势。P 型材料电子缺乏,有正温差电势;当电子从P 型穿过结点至N 型时,结点的温度降低,其能量必然增加,而且增加的能量相当于结点所消耗的能量。相反,当电子从N型流至P型材料时,结点的温度就会升高。 直接接触的热电偶电路在实际应用中不可用,所以用以以下图的连接方法来代替,实验证明,在温差电路中引入第三种材料铜连接片和导线不会改变电路的特性。 这样,半导体组件可以用各种不同的连接方法来满足使用者的要求。把一个P 型半导体组件和一个N 型半导体组件联结成一对热电偶,接上直流电源后,在接头处就会产生温差和热量的

6、转移。 在上面的接头处,电流方向是从N至P,温度下降并且吸热,这就是冷端;而在下面的一个接头处,电流方向是从P至N,温度上升并且放热,因此是热端。 按图中把假设干对半导体热电偶对在电路上串联起来,而在传热方面则是并联的,这就构成了一个常见的制冷热电堆。按图示接上直流电源后,这个热电堆的上面是冷端,下面是热端。借助铝散热器等各种散热手段,使热电堆的热端不断散热并且保持一定的温度,把热电堆的冷端放到工作环境中去吸热降温,这就是热电制冷器的工作原理。图3是热电偶的工作原理示意图。半导体:电阻率介于金属和绝缘体之间并有负的电阻温度系数的物质。半导体 半导体室温时电阻率约在10-5107欧米之间,温度升

7、高时电阻率指数则减小。半导体材料很多,按化学成分可分为元素半导体和化合物半导体两大类。锗和硅是最常用的元素半导体;化合物半导体包括- 族化合物砷化镓、磷化镓等、-族化合物( 硫化镉、硫化锌等)、氧化物(锰、铬、铁、铜的氧化物),以及由-族化合物和-族化合物组成的固溶体镓铝砷、镓砷磷等。除上述晶态半导体外,还有非晶态的玻璃半导体、有机半导体等。 本征半导体 不含杂质且无晶格缺陷的半导体称为本征半导体。在极低温度下,半导体的价带是满带(见能带理论),受到热激发后,价带中的局部电子会越过禁带进入能量较高的空带,空带中存在电子后成为导带,价带中缺少一个电子后形成一个带正电的空位,称为空穴图 1 。导带

8、中的电子和价带中的空穴合称电子 - 空穴对,均能自由移动,即载流子,它们在外电场作用下产生定向运动而形成宏观电流,分别称为电子导电和空穴导电。这种由于电子-空穴对的产生而形成的混合型导电称为本征导电。导带中的电子会落入空穴,电子-空穴对消失,称为复合。复合时释放出的能量变成电磁辐射发光或晶格的热振动能量发热。在一定温度下,电子 - 空穴对的产生和复合同时存在并到达动态平衡,此时半导体具有一定的载流子密度,从而具有一定的电阻率。温度升高时,将产生更多的电子 - 空穴对,载流子密度增加,电阻率减小。无晶格缺陷的纯洁半导体的电阻率较大,实际应用不多。 半导体半导体中杂质 半导体中的杂质对电阻率的影响

9、非常大。半导体中掺入微量杂质时,杂质原子附近的周期势场受到干扰并形成附加的束缚状态,在禁带中产加的杂质能级。例如四价元素锗或硅晶体中掺入五价元素磷、砷、锑等杂质原子时,杂质原子作为晶格的一分子,其五个价电子中有四个与周围的锗或硅原子形成共价结合,多余的一个电子被束缚于杂质原子附近,产生类氢能级。杂质能级位于禁带上方靠近导带底附近。杂质能级上的电子很易激发到导带成为电子载流子。这种能提供电子载流子的杂质称为施主,相应能级称为施主能级。施主能级上的电子跃迁到导带所需能量比从价带激发到导带所需能量小得多图2。在锗或硅晶体中掺入微量三价元素硼、铝、镓等杂质原子时,杂质原子与周围四个锗或硅原子形成共价结

10、合时尚缺少一个电子,因而存在一个空位,与此空位相应的能量状态就是杂质能级,通常位于禁带下方靠近价带处。价带中的电子很易激发到杂质能级上填补这个空位,使杂质原子成为负离子。价带中由于缺少一个电子而形成一个空穴载流子图3。这种能提供空穴的杂质称为受主杂质。存在受主杂质时,在价带中形成一个空穴载流子所需能量比本征半导体情形要小得多。半导体掺杂后其电阻率大大下降。加热或光照产生的热激发或光激发都会使自由载流子数增加而导致电阻率减小,半导体热敏电阻和光敏电阻就是根据此原理制成的。对掺入施主杂质的半导体,导电载流子主要是导带中的电子,属电子型导电,称N型半导体。掺入受主杂质的半导体属空穴型导电,称P型半导

11、体。半导体在任何温度下都能产生电子-空穴对,故N型半导体中可存在少量导电空穴,P型半导体中可存在少量导电电子,它们均称为少数载流子。在半导体器件的各种效应中,少数载流子常扮演重要角色。 N型半导体构造图PN结 P型半导体与N型半导体相互接触时,其交界区域称为PN结。P区中的自由空穴和N区中的自由电子要向对方区域扩散,造成正负电荷在 PN 结两侧的积累,形成电偶极层(图4 )。电偶极层中的电场方向正好阻止扩散的进展。当由于载流子数密度不等引起的扩散作用与电偶层中电场的作用到达平衡时,P区和N区之间形成一定的电势差,称为接触电势差。由于P 区中的空穴向N区扩散后与N区中的电子复合,而N区中的电子向

12、P区扩散后与P 区中的空穴复合,这使电偶极层中自由载流子数减少而形成高阻层,故电偶极层也叫阻挡层,阻挡层的电阻值往往是组成PN结的半导体的原有阻值的几十倍乃至几百倍。 PN结具有单向导电性,半导体整流管就是利用PN结的这一特性制成的。PN结的另一重要性质是受到光照后能产生电动势,称光生伏打效应,可利用来制造光电池。半导体三极管、可控硅、PN结光敏器件和发光二极管等半导体器件均利用了PN结的特性。 编辑本段多样性物质存在的形式多种多样,固体、液体、气体、等离子体等等。我们通常把导电性和导热性差或不好的材料,如金刚石、人工晶体、琥珀、陶瓷等等,称为绝缘体。而把导电、导热都比拟好的金属如金、银、铜、

13、铁、锡、铝等称为导体。可以简单的把介于导体和绝缘体之间的材料称为半导体。与导体和绝缘体相比,半导体材料的发现是最晚的,直到20世纪30年代,当材料的提纯技术改良以后,半导体的存在才真正被学术界认可。编辑本段分类半导体的分类,按照其制造技术可以分为:集成电路器件,分立器件、光电半导体、逻辑IC、模拟IC、储存器等大类,一般来说这些还会被分成小类。此外还有以应用领域、设计方法等进展分类,虽然不常用,但还是按照IC、LSI、VLSI超大LSI及其规模进展分类的方法。此外,还有按照其所处理的信号,可以分成模拟、数字、模拟数字混成及功能进展分类的方法。 编辑本段半导体定义电阻率介于金属和绝缘体1之间并有

14、负的电阻温度系数的物质。 半导体室温时电阻率约在10E-510E7欧姆米之间,温度升高时电阻率指数则减小。 半导体材料很多,按化学成分可分为元素半导体和化合物半导体两大类。 锗和硅是最常用的元素半导体;化合物半导体包括- 族化合物砷化镓、磷化镓等、-族化合物( 硫化镉、硫化锌等)、氧化物(锰、铬、铁、铜的氧化物),以及由-族化合物和-族化合物组成的固溶体镓铝砷、镓砷磷等。除上述晶态半导体外,还有非晶态的玻璃半导体、有机半导体等。 半导体:意指半导体收音机,因收音机中的晶体管由半导体材料制成而得名。 本征半导体不含杂质且无晶格缺陷的半导体称为本征半导体。在极低温度下,半导体的价带是满带(见能带理

15、论),受到热激发后,价带中的局部电子会越过禁带进入能量较高的空带,空带中存在电子后成为导带,价带中缺少一个电子后形成一个带正电的空位,称为空穴。导带中的电子和价带中的空穴合称电子 - 空穴对,均能自由移动,即载流子,它们在外电场作用下产生定向运动而形成宏观电流,分别称为电子导电和空穴导电。这种由于电子-空穴对的产生而形成的混合型导电称为本征导电。导带中的电子会落入空穴,电子-空穴对消失,称为复合。复合时释放出的能量变成电磁辐射发光或晶格的热振动能量发热。在一定温度下,电子 - 空穴对的产生和复合同时存在并到达动态平衡,此时半导体具有一定的载流子密度,从而具有一定的电阻率。温度升高时,将产生更多的电子 - 空穴对,载流子密度增加,电阻率减小。无晶格缺陷的纯洁半导体的电阻率较大,实际应用不多。 编辑本段历程IC封装历史始于30多年前。当时采用金属和陶瓷两大类封壳,它们曾是电子工业界的“辕马,凭其结实、可靠、散热好、功耗大、能承受严酷环境条件等优点,广泛满足从消费类电子产品到空间电子产品的需求。但它们有诸多制约因素,即重量、本钱、封装密度及引脚数。最早的金属壳是TO型,俗称“礼帽型;陶瓷壳则是扁平长方形。 大约在20世纪60年代中期,仙童公司开发出塑料双列直插式封装PDIP,有8条引线。随着硅技术的开展,芯片尺寸愈来

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 行业资料 > 国内外标准规范

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号