能量回馈电子负载原理

上传人:pu****.1 文档编号:563635185 上传时间:2023-10-12 格式:DOCX 页数:5 大小:131.20KB
返回 下载 相关 举报
能量回馈电子负载原理_第1页
第1页 / 共5页
能量回馈电子负载原理_第2页
第2页 / 共5页
能量回馈电子负载原理_第3页
第3页 / 共5页
能量回馈电子负载原理_第4页
第4页 / 共5页
能量回馈电子负载原理_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

《能量回馈电子负载原理》由会员分享,可在线阅读,更多相关《能量回馈电子负载原理(5页珍藏版)》请在金锄头文库上搜索。

1、能量回馈型电子负载的原理介绍党三磊,丘东元,张波(华南理工大学电力学院 广州 510640)Study on the Theory of Energy Recycling Electronic LoadDANG Sanlei, QIU Dongyuan(Electric Power College, South China University of Technology, Guangzhou 510640, China)摘要:能量回馈型电子负载是一种用于各种电源出厂试验的 能够模拟实际电阻负载特性的新型电力电子装置。它能够实 现对所模拟电阻值的无级调节,并能够实现电能的再生利 用,具有节能、

2、体积小、重量轻、节省安装空间、试验性能 优良等优点。本文简要描述了交直流电子负载的结构、原理 和控制方式,并对主要影响系统性能的PWM整流器的工作 原理和控制方法进行了重点分析。关键字:电子负载,能量回馈,PWM整流器ABSTRACT: The energy recycling electronic load is a new type power electronics instrument that can run with the same function as resistors in the all kinds of power source burn-in test. It ca

3、n be regarded as a resistor whose value can change smoothly. The device saves energy by feeding burn-in test power back to the utility system. It is lighter, smaller and has a better performance in the test than the normal electronic load. This paper describes the structure, principle and control st

4、rategy of AC and DC energy recycling electronic load briefly. The principle and control strategy of the PWM rectifier are studied in-depth.KEYWORDS: electronic load, energy recycling, PWM rectifier1 引言电子负载是指能模拟真实负载某些特性的电 子设备,它不仅可模拟不同数值的电阻、电感、电 容及它们的组合,而且可模拟非线性负载的某些特 性。电子负载具有调节方便、通用性强、精度高、 稳定性好等优点,是电

5、源试验测试用负载的发展方 向。电子负载作为电源测试的重要手段,随着电源 测试集成化、一体化的发展趋势,其重要性越发明 显。能量回馈型电子负载既能模拟各种负载特性, 又能将电能无污染的回馈电网,是当前电子负载发 展的必然趋势。与普通电阻负载相比,它的工作方 式是利用电力电子变换技术在完成测试功率实验 的前提下,将被测电源的输出能量循环再生利用, 既节约了能源又不产生大量的热量,避免了试验场 所环境温度升高的问题。该电子负载未将试验功率 转变为热能,因此不必使用体积庞大的电阻箱及冷 却设备,节约了安装空间。由于采用的是能量回馈 的方式,因此试验场所不必配备较大的电源容量, 降低了供电容量的成本1。

6、本文分别介绍了交直流电子负载的结构,工作 原理和相应的控制方式,并重点分析了PWM整流器 的工作原理和不同控制方式的优缺点。2 能量回馈型交流电子负载图1给出了单相能量回馈型交流电子负载系统 结构图,采用具有中间直流环节的 AC/DC/AC 双级 变换结构,分开控制电子负载的输入电流i、输出U电流i,并且能使输入和输出工作在不同的频率满 r足某些特殊电源测试需要。 AC/DC 整流单元与 DC/AC逆变单元均采用电压型PWM整流器,前级 整流单元控制被测电源的输出电流i,模拟被测电U 源需要的负载特性;后级整流单元控制直流侧电压 Vd和并网电流i。控制上前后级是解耦的,可以分 dcr开进行分析

7、和设计2。Fig.1 AC electronic load system 前级整流器的功率因数在-1至 1间可调,后级 逆变器功率因数一般为-1,被测电源输出的电能(除 去开关损耗)经逆变回馈电网。2.1 负载特性模拟功能的实现图 2 给出了负载特性模拟控制系统图,其中 Pref、Vu 和 iu 分别指模拟负载的功率、被测电源输 ref u u出电压和被测电源输出电流,i f和i f分别指被测uref uf电源输出电流控制目标值和被测电源输出电流反 馈值。前级 PWM 整流的主要目的是模拟阻感负载 特性,并把能量从被测电源传递给能量回馈单元。 对于前级整流单元而言,后级整流单元相当于直流 电压

8、源,只有一个控制量i,对i进行闭环控制。UU电子负载作为被测电源的负载,要能模拟RL负载 特性,因而图中移相电路是必需的3。P f经过移相ref后与 Vu 通过乘法器产生模拟负载输入电流(即被 u测电源输出电流)控制目标值i f,i f再与反馈电uref uref流if比较生成电流误差值,误差值经过电流调节器 uf和 PWM 发生器形成相应的 PWM 脉冲使开关管开 通或关断,达到i对i f快速跟踪,这样就实现了 u uref负载特性的模拟功能。图 2 负载特性模拟控制系统Fig.2 Control system of load characteristic simulationunit2.2

9、 能量回馈功能的实现图 3 给出了能量回馈系统控制系统图。后级整 流单元控制直流侧电压Vd和并网电流i,使并网 dcr电流正弦化和并保持功率因数为-1 是后级控制的 主要目标。如控制系统框图所示,v f为直流母线ref给定电压,vd为直流母线电压,i为并网电流,dcrV为与电网电压同相的单位正弦信号。根据对直流 s母线电压误差的比例积分调节,控制系统自动选取 能量流动方向,PI调节器的输出与V相乘生成的s正弦信号作为并网电流的控制目标值,电流目标值 与反馈值的电流误差经过电流调节器调节后生成 信号波与载波比较产生驱动信号。只要选择合适的 控制系统参数,可维持母线电压恒定的同时能量自 动选取流动

10、方向做到了能量平衡,网侧电流可为与 电网同相或反相的正弦波形且THD很小2。反馈电 流和电压通过高频噪声滤波和凹槽滤波器可以进 一步减少谐波含量4,改善电子负载的性能。P调 节器V乘法 器+ 电流调 节器PW儼 生及驱Z 电路功率 管irfVdc三角波vs噪声滤波和和凹槽滤波器图 3 能量回馈控制系统Fig.3 Control system of energy feedback unit2.3电压型PWM整流器交流电子负载中的负载特性模拟和能量回馈 两个功能的实现都依赖于电压型PWM整流器,因而 选择合适的PWM整流器拓扑结构和相应有效的控 制方式决定了电子负载的性能。PWM整流器是应用脉宽调

11、制技术(PWM )发 展起来的一种新型电源变流器,既可以将电网输入 的交流整流为输出的直流,也可方便地将直流逆变 为交流,回馈到电网中去,因而PWM整流器也被称 为脉冲变流器或四象限变流器。目前,应用最为广 泛的是电压型桥式变流器,三相电压型PWM整流器 即是其中的一种,交流电子负载的负载特性模拟单 元与能量回馈单元,直流电子负载的逆变部分都采 用这种整流器。对于此类电压型桥式电路的分析, 应当从其基本的组成单元半桥单元入手。由三相电压型PWM整流器三相电压的对称性 可以知道,直流侧中点电位与电网中线等电位。以 此电位为参考地电位,理想情况下三相电压型PWM 整流器半桥单元的理想拓扑结构如图

12、4所示。若以 正弦脉宽调制规律控制开关SI、S2,可在A点得到 基波为正弦波的脉宽调制波U ,其基波幅值:sU叫/2Q为调制比,相位和频率都可以控制。如果控 制U的频率与网压频率相同,则可以得到如下电S 压矢量关系式:U = ji + Us(2)NN 对应的电压矢量图如图4所示。图中可以看出, 调节US的幅值和相角可使iN在四个象限内随意 变化。图中给出u和u两种情况,相应得到的iS SN和i各在II、IV象限,对应于整流和逆变两种状N 态。对于电子负载能量回馈环节来说,三相电压型 脉冲整流器应工作在有源逆变的状态,且其功率因 数应为-1.0,以保证不对电网造成污染,而对交流 电子负载的负载特

13、性模拟环节,相电压型脉冲整流 器应工作在有整流状态,且其功率因数应为-1.0 至图4半桥单元拓扑及电压矢量图Fig.4 Half-bridge unit configuration and voltagevectorgraph1.0,输入电压为正弦波。控制能量回馈的关键是矢量图中的I,或者通N过对U的控制以完成对I的控制,或者直接对ISNN进行控制,完成对交流侧电流、功率因数的控制, 从而实现各种功能:整流器,逆变器,功率因数补 偿器,谐波补偿器等等。PWM整流器的电流控制既包含幅度控制,又包 含相位控制,这些年来,已经出现了不少有关的交 流侧电流控制的方法,相位幅度控制(PAC)是一 种应用

14、较多的方法。该方法基于输入回路的稳态相 量关系,根据稳态电流向量的给定、PWM基波电压 向量的幅度与相位,分别予以闭环控制,进而通过 SPWM电压控制实现对输入电流的控制。这种控制 方法存在几个方面的缺陷,一是对PWM电压向量的 幅度与相位以两个闭环分别控制,加之通常出于系 统稳定性的考虑,两个闭环的响应速度差别较大, 幅度与相位瞬态响应速度不同步,难以保证系统具 有良好的动态特性;二是从稳态相量关系出发进行 电流控制,其前提条件是交流电压源不发生畸变, 而实际上由于电网内阻抗的存在,负载的变化及各 种非线性负载等扰动尤其是在瞬态过程中,电源波 形的畸变会直接影响着系统控制的效果;三是在用 于

15、有源无功补偿的情况下,由于脉冲整流器交流侧 电流源非正弦,相量关系及SPWM将不再适用。此 外有些基于三相坐标变换的电流控制方法,往往由 于其坐标变换给系统控制带来一定的复杂性。从这点来讲,采用电流控制PWM技术可以使上 述问题得到比较圆满的解决。诸如电流滞环控制, 和PI电流控制等方法,在电网电压畸变、电流给定 波形非正弦的情况下,可以通过开关控制使网侧电 流基本上跟踪参考电流的变化。滞环电流控制的突出特点之一是控制简单,用 模拟器件很容易实现。另外,当功率器件的开关频 率很高时,响应非常快,并且对负载及电路参数的 变化很不敏感,不过模拟器件用于系统核心的电流 及PWM控制与目前的全数字化趋势很不协调。此 外,这种方法的滞环宽度固定,而开关频率不固定, 高低悬殊,有时会出现很窄的脉冲和很大的电流尖 峰。因此,采用各种改进方法是必要的。PI电流控制方法将反馈电流与给定信号相比 较,经PI调节器输出与载频三角波比较产生PWM开 关信号谐波成分远比三角波频率低。一种改进的方 法是把PI调节器置于d-q坐标系,这样所需调节的电 流为直流量,调节器的输出经旋转坐标变换,转换 成为三相正弦信号,再与三角波比较输出PWM信 号,但这种方法增加了系统实时运算处理的复杂 性,普通的微处理器难以胜任6。小惯性电流跟踪(SICT)控制是近年来兴起的

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 学术论文 > 其它学术论文

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号