焊接文献综述

上传人:M****1 文档编号:563217434 上传时间:2024-02-22 格式:DOCX 页数:14 大小:665.91KB
返回 下载 相关 举报
焊接文献综述_第1页
第1页 / 共14页
焊接文献综述_第2页
第2页 / 共14页
焊接文献综述_第3页
第3页 / 共14页
焊接文献综述_第4页
第4页 / 共14页
焊接文献综述_第5页
第5页 / 共14页
点击查看更多>>
资源描述

《焊接文献综述》由会员分享,可在线阅读,更多相关《焊接文献综述(14页珍藏版)》请在金锄头文库上搜索。

1、车用AA7075(T6)激光-MIG复合焊和单独激光焊接头组织和性能研究1. 引言铝合金材料由于导电导热性好、质量轻、抗腐蚀、易成形等优点,受到众多 工业制造领域的青睐,可以制造各种各样化工耐蚀和低温设备,这样极大地推动 了铝合金焊接技术的发展。因此,提高铝合金焊接的生产率和焊接质量,减少焊 接缺陷存在的高效焊接方法已成为实际生产的迫切要求1。激光焊接是实现铝合金结构联接最具有技术和经济优势的加工方法。在工业 生产中,激光焊接是一种很有前景的连接工艺,因为他能在较高的焊接速度和较 低的热输入下,获得深而窄的焊接接头,但成本高。气体保护焊虽然成本低,在 焊接特性上又有一定的局限性,将两种方法结合

2、,可有效的提高焊接效率,近年 来发展的铝合金复合焊接技术主要是采用高能焊接方法,如激光-电弧焊、激光- 等离子弧焊、等离子电弧焊、等离子-电子束焊、TIG-MIG、等。这些焊接方法 具有能量密度大且较集中、焊接速度高、焊接变形小、焊接质量高等优点1。此 外,基于固相连接技术的新型焊接技术搅拌摩擦焊也可用于高强铝合金的焊 接,该种方法具有优良的接头力学生能,不需要填充焊接材料,没有焊接烟法和 飞溅,很少的焊前准备和焊接变形等优势。在此主要针对高强铝合金激光 -电弧 复合焊进行分析。2. 激光复合焊的现状、实验研究及应用2.1. 高强铝合金激光焊接分析及现状铝合金材料由于导电导热性好、质量轻、抗腐

3、蚀、易成形等优点,受到众多 工业制造领域的青睐1,美欧等主要工业国家都用4 位数字来表示铝和铝合金牌 号,其中 2 系与 7 系一般为高强度铝合金,主要为压力加工铝合金中防锈铝合金 类、硬铝合金类、超硬铝合金类、锻铝合金类、铝锂合金类。铝合金的激光焊接 在八十年代还被认为是不可能的,这主要是由于铝合金对激光的高反射性和自身 的高导热性。除此之外铝合金还存在一些难点,例如铝元素电离能力低,焊接过 程中光致等离子体易于过热和扩展,焊接过程稳定性差;激光焊接熔深比大,气 泡不易上浮析出,容易产生气孔等9。激光焊接是上世纪中后期发展起来的一种焊接新技术,与传统的焊接方法相 比,激光焊因其熔深大、速度快

4、、焊后变形相对较小以及适合难焊金属的焊接而 广发应用于许多工业领域。但激光焊设备占地面积大,购置费用昂贵,设备维修 费用高等缺陷限制了激光焊接在更多工业领域中的应用2。而弧焊作为一种成熟 的金属连接技术已经在工业界得到了广泛的应用,但由于束流能量密度的限制, 相对于高能束流焊接而言,弧焊的焊接厚度和焊接速度均较小,且焊缝的热影响 区较大,焊缝具有较小的深宽比3。当前,国际上铝合金激光焊接的另一热点是采用所谓的复合工艺。即将激光 与电弧焊接结合起来。这种复合工艺被认为是综合了激光与电弧的优点,即将激 光的高能量密度和电弧的较大加热区组合起来,同时,通过激光与电弧的相互作 用,来改善激光的耦合特性

5、和电弧的稳定性,以获得一种综合的效果1。2.2. 激光电弧复合焊焊接性实验研究激光熔化极惰性气体保护复合焊技术由于其商业上应用的多样性被很快的 接受。当这种应用被广泛传播时,我们就需要了解大量工艺参数与焊接结果之间 的关系,来研究包括焊接质量,焊接组织性能,焊道扭曲变形等4。A.熔化极气体保护焊(MIG)MIG 焊接是一种效率高、自动化程度高的连接方法。对 AZ31B 镁铝合金MIG焊进行了研究,实验表明MIG焊接时热影响区和焊缝晶粒的变化趋势与TIG 焊接相类似。热影响区的晶粒粗大,焊缝区晶粒较均匀,如图1所示。但MIG焊接 接头的晶内和晶界处连续析出物增多,热影响区晶内析出物较多,而 HA

6、Z 又是焊 接接头的薄弱环节,所以会减小 HAZ 出现焊接缺陷(如热裂纹) 的几率。 MIG 焊 接时有飞溅现象,焊缝成形不及TIG均匀;MIG焊接接头的余高较高,因为一些 不稳定因素,焊缝处会出现焊瘤;MIG焊缝区的显微硬度比TIG焊高;MIG焊接 热影响区HAZ的晶内析出相弥散分布,焊缝区晶界析出相连续分布;而且MIG焊 接接头的显微硬度值较TIG焊接时要高,焊接接头的力学性能有所提高。图 1. MIG 焊接接头的显微组织对高强Al-Cu合金2219 MIG焊焊接接头组织与性能进行研究。2219铝合金 母材及人工时效处理条件下焊接接头强度系数为母材的63.2%,延伸率(6)仅 为 4.7%

7、,远低于母材的 15.4%。将时效处理后的焊接接头拉伸性能与焊态下的 接头拉伸性能进行比较,发现经过人工时效处理,接头强度明显提高,抗拉强度 ob由296.4MPa上升到316.4MPa,强度系数达到母材的67.6%,塑性有一定的 下降,延伸率 6 由 4.7%降到 4.0%。对接头拉伸断口进行观察发现焊接接头断裂 部位均为为焊缝,说明焊缝为焊接接头薄弱区。焊接接头 HAZ 的硬度高于焊缝 的硬度,越靠近熔合线,焊缝硬度越低,在熔合线附近焊缝硬度达到最低。而 HAZ 则恰恰相反,随着离熔合线的距离越远,焊接热循环峰值温度逐渐降低, 焊接热循环对HAZ的影响越小,HAZ硬度逐渐上升。焊接接头中焊

8、缝硬度值最 低,而拉伸试验表明焊接接头断裂部位为焊缝,焊接接头中焊缝拉伸性能最差, 因此焊缝为焊接接头最薄弱区6。B 自熔小孔激光焊对于自熔小孔激光焊接,高热量输入(低激光能量密度和低焊接速度组合) 形成了较大的熔池而且小孔根部位于在熔池中心部位。在这种情况下焊接过程是 相对稳定,而且不会存在严重的孔隙。相比之下,低热量输入(高激光焊接速度 高能量密度组合)会形成一个小的熔池并且小孔根部接近熔池前沿 ;这个过程不 太稳定,而且在焊缝中会产生一些严重的孔隙。我们可以发现高压保护气体可以 通过抑制熔池中的液体来改善表面的粗糙度。显微测试表明,在激光焊接过程中 的快速的热循环将导致狭长的局部熔化区和

9、热影响区。在焊接熔合区形成一个在 焊缝中心部位的等轴晶结构和靠近熔合线部位的树枝状晶粒结构。铝合金 2024 激光焊接小孔导致焊缝硬度下降至90-100 HV0.3值(与在130-140 HV0.3范围母材的硬度)。激光焊接过程中快速热循环的形成了一个狭长的部分融化区,并且 在焊缝中部的形成等轴晶组织和与融合线毗邻的柱状晶组织7。C. 激光电弧复合焊AA7075用激光保护气电弧复合焊焊接,在经过短时固溶热处理解决方案后, 在晶界的很大一部分焊接熔合区内都存在基相弥散。拉伸试验和微硬度测试表 明,焊缝也有一个类似于用 AA2319 焊接的采用 T6 标准热规范后的基相合金的 强度。根据断裂表面扫

10、描电子显微镜观察表明会产生大量细微韧性裂纹和较大的 凹坑。相比于基合金,焊缝韧性和强度的提高能够使焊缝比在没有经过固溶热处 理后具有更好的成型性8。大量的参数组合被用于检测带有切边余量的 AA7075 薄板的对接焊,首先对 焊缝表面进行目测检查,然后其结果表明复合焊的焊缝表面平滑且顶部产生规则 的焊道。典型的焊缝表面的图像如图2 所示。相比之下,相同的制造等级下,用 激光电源的单独自熔激光焊焊出的焊缝在同样的顶端和边缘会形成粗糙的焊道。图2.分别用激光电弧复合焊(上)和自体激光焊mm型外观2 mrn凝固速度在树枝状组织的元素微偏析中起到很重要的作用。一般情况下,凝 固速度越快,树枝晶间隔和第二

11、相晶界就越好,微偏析情况越小。单独激光焊形 成的焊缝在所有被检测的焊接条件中有最好的树枝状组织。然而,如图 3 显示的,在激光焊接熔合区的微观硬度仍然低于基相合金。进一步提高凝固的速度受到可 用的激光功率的影响,也受到在连续激光焊接或激光电弧复合焊下热量条件的影 响7。200 1图 3. 采用自体激光焊接以 80mm/s 的焊接速度焊出的焊缝的横向微观硬度的测量结果如图在进行标准对接焊缝拉伸测试时,焊道要横向置于测试装置的中间。在经过 固溶处理和120C的24小时人工时效处理后,测试样品就有了 510 5Mpa的屈 服强度(0.2%)和548 6MPa的极限抗拉强度(UTS)。包括弹性伸长率和

12、塑性 伸长率的总伸长率在焊缝断裂时伸长率达到5.7%。这些对于原始母材为AA7075 来说不亚于480MPa的极限强度,536MPa的极限抗拉强度和14.5%的伸长率的 钢。断裂试样的断口表面在扫描电子显微镜下被检测。如图4显示了固溶处理前 后试样断口表面情况。经过固溶热处理后的样品存在大量细微凹坑和较大的间 隙。类似的特征也在原始母材合金的断口表面出现。细密的凹坑表现出了韧性被 破坏,还有较大空隙也与在光学显微镜所示图片显示的树枝晶晶界里被隔离的第 二相有关。所有拉伸测试的破坏部位都位于焊缝熔合区靠近熔合边界的位置,这 也暗示了焊缝的塑性变形能力低于其他基合金。但是,由于焊缝有相对的强度等

13、级,所以伸长和变形不再集中在焊缝熔合区。因此焊接结构有个相对较好的变形 能力。激光-MIG复合焊接方法中,采用了 MIG焊,使得熔池宽度增加,所以装 配要求降低,焊缝容易跟踪。 MIG 电弧可以解决初始熔化问题,从而可以减少 激光器的功率。MIG焊的气流可以解决激光焊金属蒸汽的屏蔽问题;MIG焊便 于加入填充焊丝,能调整焊缝金属成分,从而避免表面凹陷形成的咬边。激光焊的深熔、快速、高效、高能密度输入特点仍然保持。近年来研究表明,激光-MIG 复合焊在中厚板焊接中有较明显的优势。该焊接方法可通过调节激光与电弧的相 对位置,可有效的改善焊缝的适应性,改善焊缝的成形,同时,输入的电弧能量 能调节冷却

14、速度,进而改善微观组织,在激光与电弧相互作用下,焊接过程变得 更加稳定,而且在增加熔深的同时提高焊接速度10。图 4. 在自然时效处理后的焊缝断口表面显示出晶粒内部的缺陷(上图),而在经过短时固溶热处理后断口表面会有大量细微柔软的凹陷和尺寸较大的缝隙实验表明AA2519(T87)激光-MIG复合焊中,采用类似双U型坡口比国外常 用的双 V 型坡口更有利于复合焊的焊接; 保护气体对焊接接头的气孔的形成比 较敏感, 从而影响焊接接头的抗拉强度, 复合焊的保护气体一般采用氦气中添加 少量的 Ar 送丝速度通过改变焊接热输入来影响焊缝组织的晶粒大小以及强化元 素的烧损量对焊接接头的强度影响较大。焊后对

15、接头进行合适的热处理, 可以显 著提升接头的抗拉强度Mi。激光与电弧之间的距离(Dla)对复合焊的熔深影响较 大,在Dla为2mm时,熔深达到最大。离焦量主要是通过影响能量密度来影响熔深 和熔宽,在离焦量为 +2mm 时熔深达到最大 ,不同于单独激光焊负离焦时熔深最 大。焊接速度有一个合适的范围,在这个范围内随着焊接速度的增加,熔深熔宽减 少。送丝速度对复合焊的焊缝形状影响最大,送丝丝度较小时焊缝形状类似于单 独激光焊;送丝速度过大电弧等离子体屏蔽激光,焊缝形状类似于MIG。激光的倾 斜角度对复合焊的焊缝熔深熔宽也有一定的影响,当激光的倾斜角度为ioc时, 熔深达到最大熔宽最小。保护气体熔台区

16、刁、孔移动方向徼光缕流激光束图 5. 激光电弧复合焊示意图轻量化轿车用3A21铝合金MIG+激光复合焊接工艺,在MIG +激光复合焊 接过程中,熔深和熔宽均随着焊接速度的增大而减小。在较高焊接速度时,熔深、 熔宽与焊接速度近似为线性关系;MIG +激光复合焊接与激光和M IG电弧单独 焊接相比,复合焊接的熔深大大增加 ,且焊缝成形良好,无缺陷,同时实现了小功率 激光焊接铝合金,并且大大提高了生产效率; MIG +激光复合焊接时较大的熔深, 在树枝晶成长过程中,溶质中元素向焊缝中心区聚集,最后在中心区形成微细等轴 晶,有利于改善焊缝的冶金机械性能13。在比较宽的参数范围内YAG激光2脉冲MIG复合焊接铝合金具有焊缝成 型美观,无气孔等优点,熔深与激光焊相比增加 4 倍,与脉冲 MIG 焊接相比增加 1 倍

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 学术论文 > 其它学术论文

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号