第二章雷暴及其起电.doc

上传人:大米 文档编号:563085556 上传时间:2022-08-23 格式:DOC 页数:27 大小:765.01KB
返回 下载 相关 举报
第二章雷暴及其起电.doc_第1页
第1页 / 共27页
第二章雷暴及其起电.doc_第2页
第2页 / 共27页
第二章雷暴及其起电.doc_第3页
第3页 / 共27页
第二章雷暴及其起电.doc_第4页
第4页 / 共27页
第二章雷暴及其起电.doc_第5页
第5页 / 共27页
点击查看更多>>
资源描述

《第二章雷暴及其起电.doc》由会员分享,可在线阅读,更多相关《第二章雷暴及其起电.doc(27页珍藏版)》请在金锄头文库上搜索。

1、第二章 雷暴及其起电雷暴云是闪电的主要产生源,按照Winn et al (1974)的探空结果,当云中局部电场超过约400 kV/m时,就能发生闪电放电。因此,在讨论闪电之前,本章将简要概述雷暴的发展及其电荷结构,并阐述雷雨云起电机制的一些基本概念和相关的现象。有关细节可参阅下面提到的一些专著或文献。 2.1 雷暴的形成 典型的雷暴云是具有强烈上升气流和下沉气流的(积雨)云。这种云垂直伸展较高,如高耸陡山,顶部可呈砧或鬃状;底部较暗,时有悬球状结构。单个积雨云的主体水平尺度在几公里到20公里左右。雷暴云的发展与热气团在不稳定环境中的对流抬升有关。例如,当地表被太阳加热时,部分能量将转移给低层大

2、气并加热地表附近的空气。被加热后的低层暖湿空气密度减小,在不稳定的垂直大气中逐步上升。由于气压随高度降低,因而空气在上升过程中不断膨胀,并将内部的热能转化为势能,从而导致温度下降。如果气团继续上升,冷却的结果将使水汽凝结到漂浮在空气中的固态凝结核上,由此形成了气团内部杂乱无章的小水滴,这就是“云”。由于这种云由液态水滴组成,称为暖云。空气上升后,云四周较稠密的干冷空气将下沉,从而形成了以环型的上升气流和下沉气流为特征的对流单位体(见图2-1)。上升气团的垂直渗透高度受大气稳定度、周围空气混合后的稀释度以及摩擦力三个因素的制约。如果对流能够继续进行,则将发展成为几公里厚的旺盛积雨云,并可以大于1

3、0 m/s的垂直速度上升。在气流上升过程中,由于各种原因导致水滴增长,所形成的水滴可分为两种类型:一是半径为10100 m的小水滴(云滴),它保持悬浮状态,并随气流而上升;另一种是雨滴,它的尺寸较大,并具有等于或大于上升气流(510 m/s)的相对下降速度。这些雨滴的半径为0.11 mm,有的甚至可达4 mm。每千克空气中一般有0.11 g的液态水含量。具有强大上升气流而且发展旺盛的积状云云体和云高不停地增长,直到它们遇到大气中的热稳定层才终止。稳定的平流层常限制了大多数雷暴发展的最终高度。当上升云体遇到稳定层时,其垂直运动往往要发生偏转,并将失去积状云的外貌,而呈现为环型扁平状云顶。在云中的

4、负温区,大气中另一种冰核开始起作用。水汽在其上凝华或过冷水滴在其上冻结形成冰晶,进而开始了固体的增长过程。没有凝结核和冰核的作用,就不能实现水的相变,在对流层也就不可能形成云。由于云顶温度可达到-50,许多降水粒子将变成雪晶的形式。这些晶体从较高的冷区降落到低层暖区的过程中,形状及大小将有所改变,例如它们可以聚集成直径达3 cm大的雪片;如果它们通过相对较暖的云区降落,遇到过冷却的云滴,雪晶可捕获云滴并使其冻结在雪晶的表面上(结凇)。结凇严重的雪晶叫做霰(小冰粒子)。 在云中的0高度层以下,冻结粒子开始融化,并降到地面成为雨。假如降落中的雨滴遇到更冷的空气(例如从逆温层降落),它们达到地面时可

5、以成为小冰粒。云中温度高于零度或在负温区只有过冷水滴的云被称为暖云或过冷云;包含固、液两态的云叫做混合云。 一般情况下,雷暴的发展要经过初始发展、成熟和消散三个发展阶段。在初始发展阶段即上述的积云阶段,积云内部为上升气流,且降水开始发生。当上升气流上升到某一高度时,积云不再上浮,这个高度通常在对流层顶附近,大约为1015 km,这时候雷暴单体达到它的成熟阶段。在这一阶段,被聚集的雨水迅速降落到地面,形成阵雨,并拌随着一股冷的下沉气流。在下沉气流中,雨在云底下方被蒸发而连续冷却,此时的空气比原先上升时的空气更冷。由于单体的上升气流靠暖湿空气而支持,而下沉气流将阻止上升气流的发展,因此雷暴云单体最

6、终将因为这些下沉气流切断了暖湿空气的供应而进入消散阶段。同时,这股冷气流能抬升邻近周围的湿润空气,因而可能触发新的单体形成。这个过程可以重复几次,整个雷暴的寿命可持续12个小时(Brooks,1925;Magono,1980)。在这时段内雷暴按所在高度层的高空风向移动1632 km。 与这三个发展阶段相应的地面天气情况也各不相同。在开始的发展阶段,暖湿气流缓慢地辐合;在成熟阶段降水造成的冷空气下冲形成一条微尺度冷锋,在下沉空气的前沿线上,气温和风发生突然的改变;在消亡阶段,下沉气流的冷堆消散,风也减弱。除了由大尺度锋系(这种锋系一般在常规天气图上可以分析)引起的雷暴以外,地面的情况又逐渐回到雷

7、暴发展前的样子。 通常,人们把水平尺度在25250 km范围内的上述天气现象和天气系统称为中尺度对流系统(MCS),它介于大尺度(2502500 km)和小尺度(2.525 km)系统之间,特指强风暴等有组织的雷暴或对流系统。强风暴系统常常带来严重的灾害、雷暴、暴雨、大风、龙卷风、冰雹等都与这种系统有关。尤其是在中纬度地区,许多强烈的天气常常是由组织的强对流系统造成的。例如,在热带和亚热带地区年降水量的很大部分是由对流性暴雨造成的。在有些地区,强对流系统甚至是引起最严重灾害的天气现象,如美国中西部在强对流系统中发生的龙卷风是最严重的天气灾害。因而,对强对流系统的研究在灾害性天气的研究中占有很重

8、要的地位。 根据气象观测和卫星资料的统计,每一时刻全球大约发生2000个雷暴。雷暴云的尺度变化很大,小的出现在亚热带区,云中温度可能处处高于0,例如典型的暖云。强雹暴的垂直高度可达海拔20 km。尽管雷暴云的高度随地理位置的不同有较大的差异,但一般认为在海拔812 km之间。 在典型的雷雨云中,由于有重力场和温度梯度,同时还存在大量的云滴和冰晶等云粒子,它们之间的相互作用,可通过一种或多种起电机制,使得雷暴云内发生电荷分离。一般来讲,雷暴云的上部带正电荷,下部则带负电荷。因而雷暴的电荷结构是典型的电偶极子,偶极子的带电区直径为几公里量级。除了这两个主电荷区外,在雷暴云的底部还可有一个小的正电荷

9、区。对于夏季雷暴,主正电荷区的海拔高度一般为1016km,而负电荷区的海拔高度为610 km。2.2 雷暴云中的电荷结构 对雷暴云内的电荷结构研究一直是大气电学研究的重要内容,雷暴云内的实际观测、实验室模拟和数值模式研究是三个相互补充的重要研究手段。本节将集中介绍雷暴云中电荷结构的实际探测。 雷暴云电荷结构的实际探测一般采用三种方式:利用闪电电场变化的多站地面观测来拟合闪电源的位置,从而来推断云中与闪电放电有关的云电荷分布(Jacobson and Krider, 1976;Krehbiel et al, 1979;Brook et al, 1982; Reynolds and Neil, 1

10、985;Maier and Krider, 1986;Krider, 1989;Koshak and Krider, 1989;Murphy et al, 1996;郄秀书等,1998)。火箭或气球携带电场仪穿云观测(Winnet al, 1974;Byrne et al, 1983;Marshall and Rust, 1991;Marshall et al, 1995a,b;Weber et al, 1982),利用在云内测量到的电场变化,通过高斯定理来估计云中的电荷结构。飞机穿云观测(Kasemir and Perkins, 1978;Imyanitov et al, 1972;Fitz

11、gerald, 1976;Raymond, 1991;Mo et al, 1998)。第一种方法实际上首先假定闪电所中和的电荷源呈简单的球对称分布,然后再利用非线性最小二乘法对闪电所中和的电荷源位置和电荷量进行拟合,通过对大量闪电的拟合结果来推断云中的电荷分布。这种方法虽然有一定的近似性,但是随着闪电数量的增多,其结果会接近真实。图2-2是利用多站同步观测通过拟合闪电放电源的位置而得到的美国Florida, New Mexico夏季雷暴和日本冬季雷暴电荷分布经典模式(Krehbiel et al, 1979;Brook et al, 1982;Krider, 1989)。不难看出,云中的电荷结

12、构呈典型的偶极电荷分布。事实上,利用这种方法得到的只是与闪电放电有关的云内电荷分布,在实际的雷暴云中,其电荷结构远比上述简化的偶极电荷模式复杂得多。除了雷暴的主正、负电荷区和底部的小正电荷区外,电荷结构可能会发生倾斜,也可能呈现多偶极形式,而且,不同地区的雷暴特征也不完全一样。比如Rust等(1992)利用电场探空发现在美国的Oklahoma中尺度对流系统(MCS)中有三个以上的主电荷区;中国内陆高原地区的雷暴云底部,正电荷区的电荷量和分布范围,都较常规偶极电荷结构雷暴内的小电荷区要大得多(王才伟等,1987;刘欣生等,1987);另外,云内的电场探空(Winn et al, 1981;Byr

13、ne et al, 1983)还进一步发现负电荷区所对应的温度层为-5 -15,厚度为公里量级。负电荷区所在的温度层基本上不随雷暴的发展而变化。负电荷层所对应温度层的稳定性表明了一般雷暴云起电的温度层在0以下或-10左右,而在0以上的温度层基本不直接参与起电。Stolzenburg et al(1998a, b, c)曾经利用气球携带的电场仪和无线探空设备对15次中尺度对流系统(上升气流内部10次、外部5次)和13次孤立雷暴(上升气流内部7次、外部6次)进行了电场探空,并结合过去的电场探空观测,利用高斯定理对两种对流系统中的电荷结构进行了推算。图2-3给出了其中一次中尺度对流系统上升气流内部的

14、基本电场分布和由电场分布推算出的一维电荷分布。电场结构中的3个特征点,和分别代表较低高度的正峰值、负峰值和较高高度的正峰值;5次闪电对应的电场变化分别以L来标志。一维的电荷分布由高斯定律近似得到。4个电荷中心对应的平均电荷密度p和深度z分别表示在图中。图2-4给出了其中一次中尺度对流系统上升气流外部的基本电场分布和由电场分布推算出的一维电荷分布。无上升气流区有5个峰值电场特征点,分别以,和标出。由高斯定律近似得到一维电荷分示于图(b)中,6个电荷中心中上部的正电荷区包含平均电荷p相似的3个区域,区域之间的电荷密度为零。可以看出在上升气流区域内、外的电荷结构有明显的差别。在上升气流内部包含4个电

15、荷区域,呈现上负正负正的电荷结构,而上升气流外部包含6个电荷区域,呈现上负上正主负主正下负下正的电荷结构。在上升气流外部探测到的正、负最大电场均大于上升气流内部,而且高度较低。除了上部的正电荷区域外,上升气流外部的电荷区域深度较浅,而且电荷密度较大。上升气流外部的主电荷区域高度较低而且温度较度,分别为5.5 km和6.2。 图2-5是根据他们进行的15次探空和Byrne et al(1983)的一次探空得到的每次中尺度对流系统的电荷分布图示。 图2-6是Stolzenburg et al(1998b)根据13次孤立超级单体雷暴的电场探空得到的电荷分布示意图。7次上升气流内部的电场探空发现电场共

16、有3个峰值,另外在8km处还有一个正峰值。由此推算在上升气流内部有4个电荷区域。在上升气流外部的电场结构和电荷结构较复杂。与在中尺度对流系统中的探测结果一样,在上升气流区内、外部的电荷结构有明显的差别。2.3 雷暴云产生的电场以及近地面电晕离子的影响 雷暴云在地面产生的电场一直是用来衡量雷暴强弱的一个重要参量。通常雷暴可在地面产生几kV/m的电场,而在自然尖端如灌木、草丛等各种接地的突出尖端上的电场将比环境电场大几十乃至几百倍。当环境地面电场超过一定的阈值,一般为几kV/m时,自然尖端上便发生电晕放电,从而向空间释放离子,形成厚达几百米的空间电荷屏蔽层并影响地面电场(Winn and Byerley III, 19

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 生活休闲 > 社会民生

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号