离心压缩机原理及结构.doc

上传人:M****1 文档编号:562993643 上传时间:2023-09-03 格式:DOC 页数:7 大小:51.01KB
返回 下载 相关 举报
离心压缩机原理及结构.doc_第1页
第1页 / 共7页
离心压缩机原理及结构.doc_第2页
第2页 / 共7页
离心压缩机原理及结构.doc_第3页
第3页 / 共7页
离心压缩机原理及结构.doc_第4页
第4页 / 共7页
离心压缩机原理及结构.doc_第5页
第5页 / 共7页
点击查看更多>>
资源描述

《离心压缩机原理及结构.doc》由会员分享,可在线阅读,更多相关《离心压缩机原理及结构.doc(7页珍藏版)》请在金锄头文库上搜索。

1、离心压缩机原理及结构一、工作原理汽轮机(或电动机)带动压缩机主轴叶轮转动,在离心力作用下,气体被甩到工作轮后面的扩压器中去。而在工作轮中间形成稀薄地带,前面的气体从工作轮中间的进汽部份进入叶轮,由于工作轮不断旋转,气体能连续不断地被甩出去,从而保持了气压机中气体的连续流动。气体因离心作用增加了压力,还可以很大的速度离开工作轮,气体经扩压器逐渐降低了速度,动能转变为静压能,进一步增加了压力。如果一个工作叶轮得到的压力还不够,可通过使多级叶轮串联起来工作的办法来达到对出口压力的要求。级间的串联通过弯通,回流器来实现。这就是离心式压缩机的工作原理。二、基本结构离心式压缩机由转子及定子两大部分组成,结

2、构如图6-1所示。转子包括转轴,固定在轴上的叶轮、轴套、平衡盘、推力盘及联轴节等零部件。定子则有气缸,定位于缸体上的各种隔板以及轴承等零部件。在转子与定子之间需要密封气体之处还设有密封元件。各个部件的作用介绍如下。1、叶轮 叶轮是离心式压缩机中最重要的一个部件,驱动机的机械功即通过此高速回转的叶轮对气体作功而使气体获得能量,它是压缩机中唯一的作功部件,亦称工作轮。叶轮一般是由轮盖、轮盘和叶片组成的闭式叶轮,也有没有轮盖的半开式叶轮。: . G 1 G0 m F/ % y4 u( r0 W2 # j Q( Y1.吸入室2.叶轮* W; G) H; D) W# w0 T: E& N+ Q1 5 Q

3、 # f 3.扩压器6 w7 D$ Q& x w q g$ q, s1 4.弯道 Q8 H/ 3 E0 y8 g5.回流器1 l5 Z/ e1 P+ D% A, o% Y6.蜗壳& E i& 0 g |4 f7、8.轴端密封 1 ?% , P: m; u& ) D3 a% : x7 ) V D6 m* o6 i9.支持轴承10.止推轴承 # t! # U1 r4 m+ k l B 11.卡环12.机壳( a8 v. R9 d& i2 A k5 G13.端盖$ v r5 : 2 w5 r( n* O0 q d+ q6 k# 14.螺栓. & H2 x+ W9 E: K) n4 |7 U6 A#

4、A4 a6 x: a0 4 U+ I5 k$ ?+ O8 ?15.推力盘! E8 T/ d# . R1 Z1 c8 V16.主轴 n0 N% P) |- b+ 7 8 L7 I17.联轴器* i0 O$ H) y7 A$ |9 r o, V% q5 ! P2 ) U1 Y( c! R18轮盖密封 19.隔板密封20.隔板 图6-13 L1 T$ i / Q/ ?* v离心式压缩机纵剖面结构图.! 7 u0 a( b( 6 y F8 K1 w1 p$ E! d) $ e0 Z; L0 p$ y3 9 s( y# Z; M* p% s8 % / e! S1 W3 2、主轴主轴是起支持旋转零件及传递

5、扭矩作用的。根据其结构形式。有阶梯轴及光轴两种,光轴有形状简单,加工方便的特点。3、平衡盘在多级离心式压缩机中因每级叶轮两侧的气体作用力大小不等,使转子受到一个指向低压端的合力,这个合力即称为轴向力。轴向力对于压缩机的正常运行是有害的,容易引起止推轴承损坏,使转子向一端窜动,导致动件偏移与固定元件之间失去正确的相对位置,情况严重时,转子可能与固定部件碰撞造成事故。平衡盘是利用它两边气体压力差来平衡轴向力的零件。它的一侧压力是末级叶轮盘侧间隙中的压力,另一侧通向大气或进气管,通常平衡盘只平衡一部分轴向力,剩余轴向力由止推轴承承受,在平衡盘的外缘需安装气封,用来防止气体漏出,保持两侧的差压。轴向力

6、的平衡也可以通过叶轮的两面进气和叶轮反向安装来平衡。4、推力盘由于平衡盘只平衡部分轴向力,其余轴向力通过推力盘传给止推轴承上的止推块,构成力的平衡,推力盘与推力块的接触表面,应做得很光滑,在两者的间隙内要充满合适的润滑油,在正常操作下推力块不致磨损,在离心压缩机起动时,转子会向另一端窜动,为保证转子应有的正常位置,转子需要两面止推定位,其原因是压缩机起动时,各级的气体还未建立,平衡盘二侧的压差还不存在,只要气体流动,转子便会沿着与正常轴向力相反的方向窜动,因此要求转子双面止推,以防止造成事故。5、联轴器由于离心压缩机具有高速回转、大功率以及运转时难免有一定振动的特点,所用的联轴器既要能够传递大

7、扭矩,又要允许径向及轴向有少许位移,联轴器分齿型联轴器和膜片联轴器,目前常用的都是膜片式联轴器,该联轴器不需要润滑剂,制造容易。6、机壳机壳也称气缸,对中低压离心式压缩机,一般采用水平中分面机壳,利于装配,上下机壳由定位销定位,即用螺栓连接。对于高压离心式压缩机,则采用圆筒形锻钢机壳,以承受高压。这种结构的端盖是用螺栓和筒型机壳连接的。7、扩压器气体从叶轮流出时,它仍具有较高的流动速度。为了充分利用这部分速度能,以提高气体的压力,在叶轮后面设置了流通面积逐渐扩大的扩压器。扩压器一般有无叶、叶片、直壁形扩压器等多种形式。8、弯道在多级离心式压缩机中级与级之间,气体必须拐弯,就采用弯道,弯道是由机

8、壳和隔板构成的弯环形空间。9、回流器在弯道后面连接的通道就是回流器,回流器的作用是使气流按所需的方向均匀地进入下一级,它由隔板和导流叶片组成。导流叶片通常是圆弧的,可以和气缸铸成一体也可以分开制造,然后用螺栓连接在一起。10、蜗壳蜗壳的主要目的,是把扩压器后,或叶轮后流出的气体汇集起来引出机器,蜗壳的截面形状有圆形、犁形、梯形和矩形。11、密封为了减少通过转子与固定元件间的间隙的漏气量,常装有密封。密封分内密封,外密封两种。内密封的作用是防止气体在级间倒流,如轮盖处的轮盖密封,隔板和转子间的隔板密封。外密封是为了减少和杜绝机器内部的气体向外泄露,或外界空气窜入机器内部而设置的,如机器端的密封。

9、离心压缩机中密封种类很多,常用的有以下几种:1)迷宫密封迷宫密封目前是离心压缩机用得较为普遍的密封装置,用于压缩机的外密封和内密封。迷宫密封的气体流动(见图6-2)5 e 7 G6 b$ J1 c; a,当气体流过梳齿形迷宫密封片的间隙时,气体经历了一个膨胀过程,压力从P1降至右端的P2,这种膨胀过程是逐步完成的,当气体从密封片的间隙进入密封腔时,由于截面积的突然扩大,气流形成很强的旋涡,使得速度几乎完全消失,密封面两侧的气体存在着压差,密封腔内的压力和间隙处的压力一样,按照气体膨胀的规律来看,随着气体压力的下降,速度应该增加,温度应该下降,但是由于气体在狭小缝隙内的流动是属于节流性质的,此时

10、气体由于压降而获得的动能在密封腔中完全损失掉,而转化为无用的热能,这部分热能转过来又加热气体,从而使得瞬间刚刚随着压力降落下去的温度又上升起来,恢复到压力没有降低时的温度,气流经过随后的每一个密封片和空腔就重复一次上面的过程,一直到压力P2为止。由此可见迷宫密封是利用节流原理,当气体每经过一个齿片,压力就有一次下降,经过一定数量的齿片后就有较大的压降,实质上迷宫密封就是给气体的流动以压差阻 1 E6 S# t6 d7 E6 O$ e. g h力,从而减小气体的通过量。图6-2 迷宫密封的气体流动图 2 W u - y: l( E7 S; s7 K, A常用的迷宫密封用的较多的有以下几种。8 &

11、 F U) Z8 X/ m/ C$ / d平滑形3 Q/ I5 / N8 K8 F; P- H( Y见图6-3,轴作成光轴,密封体上车有梳齿或者镶嵌有齿片,结构简单。0 M; r1 L% d5 |5 图6-3. S 3 A! P$ d! I: N7 D平滑形迷宫密封6 n: o, w8 o p: g$ U/ Y Q曲折形* P$ ; d$ z; O q |$ e# N6 X8 见图6-4,为了增加每个齿片的节流降压效果,发展了曲折型的迷宫密封,密封效果比平滑形好。7 b& Z7 B( s3 F9 y: o N H; d2 ?& T# n! l图6-4% v5 ?+ k6 C2 A) v $ w

12、# C曲折形迷宫密封台阶形 见图6-5,这种型式的密封效果也优于平滑形,常用于叶轮轮盖的密封,一般有35个密封齿。 6 n! o5 K( * o: Y% d# o2)油膜密封,即浮环密封浮环密封的原理是靠高压密封在浮环与轴套间形成的膜,产生节流降压,阻止高压侧气体流向低压侧,浮环密封既能在环与轴的间隙中形成油膜,环本身又能自由径向浮动。图6-54 H+ _+ G) n2 l1 w7 a4 9 I台阶形迷宫密封 a8 Y) L& F( F* q3 V/ i图6-6 螺旋槽面干气密封结构图靠高压侧的环叫高压环,低压侧的环叫低压环,这些环可以自由沿径向浮动,但不能转动,密封油压力通常比工艺气压力高0

13、.5Kg/cm2 左右进入密封室,一路经高压环和轴之间的间隙流向高压侧,在间隙中形成油膜,将高压气封住,另一路则由低压环与轴之间的间隙流出,回到油箱,通常低压环有好几只,从而达到密封的目的。浮环密封用钢制成,端面镀锡青铜,环的内侧浇有巴氏合金,以防轴与油环的短时间的接触,巴氏合金作为耐磨材料。浮环密封可以做到完全不泄露,被广泛地用作压缩机的轴封装置。3)机械密封 图6-7 螺旋槽动环密封面 4 s* l4 Z2 A, j0 W6 l4 e! & 机械密封装置有时用于小型压缩机轴封上,压缩机用的机械密封与一般泵用的机械密封的不同点,主要是转速高,线速度大,PV值高,摩擦热大和动平衡要求高等。因此

14、,在结构上一般将弹簧及其加荷装置设计成静止式而且转动零件的几何形状力求对称,传动方式不用销子、链等,以减少不平衡质量所引起的离心力的影响,同时从摩擦件和端面比压来看,尽可能采取双端面部分平衡型,其端面宽度要小,摩擦副材料的摩擦系数低,同时还应加强冷却和润滑,以便迅速导出密封面的摩擦热。4)干气密封随着流体动压机械密封技术的不断完善和发展,其重要的一种密封型式螺旋槽面气体动压密封即干气密封在石化行业得到了广泛的应用。相对于封油浮环密封干气密封具有较多的优点:运行稳定可靠易操作,辅助系统少,大大降低了操作人员维护的工作量,密封消耗的只是少量的氮气,既节能又环保。图6-8干气密封作用力图$ , Z.

15、 q8 O4 o) M- |7 k图6-6所示为螺旋槽面干气密封的示意图。它由动环1、静环2、弹簧4、O形环3、5、8,组装套7及轴6组成。图6-7所示为动环表面精加工出螺纹槽而后研磨、抛光的密封面。一般来讲螺旋槽深度约2.510m,密封环表面平行度要求很高,需小于1m,螺旋槽形状近似对数螺旋线。如图6-7示,当动环旋转时将密封用的氮气周向吸入螺旋槽内,由外径朝向中心,径向方向朝着密封堰流动,而密封堰起着阻挡气体流向中心的作用,于是气体被压缩引起压力升高,此气体膜层压力企图推开密封, 形成要求的气膜。此平衡间隙或膜厚h典型值为3m。这样,被密封气体压力和弹簧力与气体膜层压力配合好,使气膜具有良好的弹性既气膜刚度高,形成稳定的运转并防止密封面相互接触,同时具有良好刚度的氮气膜可有效的阻止被介质的泄漏。干气密封作用力情况见图6-8在正常运转条件下该密封的闭合力(弹簧和气体作用力)等于开启力(气膜作用力),当受到外力干扰,间隙减小,则气体剪切率增大,螺旋槽开启间隙的效能增加,开启力大于闭合力,恢复到原间隙,若受到外扰间隙增大,则间隙内膜压下降,开启力小于闭合力,密封面

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲 > 科普知识

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号