圆锥曲线中离心率及其范围的求解专题(教师版).doc

上传人:博****1 文档编号:562915463 上传时间:2023-02-05 格式:DOC 页数:13 大小:1.36MB
返回 下载 相关 举报
圆锥曲线中离心率及其范围的求解专题(教师版).doc_第1页
第1页 / 共13页
圆锥曲线中离心率及其范围的求解专题(教师版).doc_第2页
第2页 / 共13页
圆锥曲线中离心率及其范围的求解专题(教师版).doc_第3页
第3页 / 共13页
圆锥曲线中离心率及其范围的求解专题(教师版).doc_第4页
第4页 / 共13页
圆锥曲线中离心率及其范围的求解专题(教师版).doc_第5页
第5页 / 共13页
点击查看更多>>
资源描述

《圆锥曲线中离心率及其范围的求解专题(教师版).doc》由会员分享,可在线阅读,更多相关《圆锥曲线中离心率及其范围的求解专题(教师版).doc(13页珍藏版)》请在金锄头文库上搜索。

1、圆锥曲线中离心率及其范围的求解专题【高考要求】1熟练掌握三种圆锥曲线的定义、标准方程、几何性质,并灵活运用它们解决相关的问题。2掌握解析几何中有关离心率及其范围等问题的求解策略;3灵活运用教学中的一些重要的思想方法(如数形结合的思想、函数和方程的思想、分类讨论思想、等价转化的思想学)解决问题。【热点透析】与圆锥曲线离心率及其范围有关的问题的讨论常用以下方法解决:(1)结合定义利用图形中几何量之间的大小关系;(2)不等式(组)求解法:利用题意结合图形(如点在曲线内等)列出所讨论的离心率(a,b,c)适合的不等式(组),通过解不等式组得出离心率的变化范围;(3)函数值域求解法:把所讨论的离心率作为

2、一个函数、一个适当的参数作为自变量来表示这个函数,通过讨论函数的值域来求离心率的变化范围。(4)利用代数基本不等式。代数基本不等式的应用,往往需要创造条件,并进行巧妙的构思;(5)结合参数方程,利用三角函数的有界性。直线、圆或椭圆的参数方程,它们的一个共同特点是均含有三角式。因此,它们的应用价值在于: 通过参数简明地表示曲线上点的坐标; 利用三角函数的有界性及其变形公式来帮助求解范围等问题;(6)构造一个二次方程,利用判别式D0。2.解题时所使用的数学思想方法。(1)数形结合的思想方法。一是要注意画图,草图虽不要求精确,但必须正确,特别是其中各种量之间的大小和位置关系不能倒置;二是要会把几何图

3、形的特征用代数方法表示出来,反之应由代数量确定几何特征,三要注意用几何方法直观解题。(2)转化的思想方汉。如方程与图形间的转化、求曲线交点问题与解方程组之间的转化,实际问题向数学问题的转化,动点与不动点间的转化。(3)函数与方程的思想,如解二元二次方程组、方程的根及根与系数的关系、求最值中的一元二次函数知识等。(4)分类讨论的思想方法,如对椭圆、双曲线定义的讨论、对三条曲线的标准方程的讨论等。【题型分析】1. 已知双曲线的左、右焦点分别为、,抛物线的顶点在原点,准线与双曲线的左准线重合,若双曲线与抛物线的交点满足,则双曲线的离心率为( )A BCD解:由已知可得抛物线的准线为直线, 方程为;由

4、双曲线可知, , , ,2椭圆()的两个焦点分别为、,以、为边作正三角形,若椭圆恰好平分三角形的另两边,则椭圆的离心率为 ( B ) A B C D解析:设点为椭圆上且平分正三角形一边的点,如图,由平面几何知识可得,所以由椭圆的定义及得:,故选B 变式提醒:如果将椭圆改为双曲线,其它条件不变,不难得出离心率3. (09浙江理)过双曲线的右顶点作斜率为的直线,该直线与双曲线的两条渐近线的交点分别为若,则双曲线的离心率是 ( )A B C D【解析】对于,则直线方程为,直线与两渐近线的交点为B,C,因此答案:C4. (09江西理)过椭圆()的左焦点作轴的垂线交椭圆于点,为右焦点,若,则椭圆的离心率

5、为( ) A B C D 【解析】因为,再由有从而可得,故选B5.(08陕西理)双曲线(,)的左、右焦点分别是,过作倾斜角为的直线交双曲线右支于点,若垂直于轴,则双曲线的离心率为( B )ABCD6.(08浙江理)若双曲线的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是(D) (A)3 (B)5 (C) (D)7.(08全国一理)在中,若以为焦点的椭圆经过点,则该椭圆的离心率 8.(10辽宁文)设双曲线的一个焦点为,虚轴的一个端点为,如果直线与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( )(A) (B) (C) (D)解析:选D.不妨设双曲线的焦点在轴上,设其方程为:,则一个

6、焦点为 一条渐近线斜率为:,直线的斜率为:, ,解得.9.(10全国卷1理)已知F是椭圆C的一个焦点,B是短轴的一个端点,线段BF的延长线交C于点D,且2,则C的离心率为_解析:答案:如图,设椭圆的标准方程为1(ab0)不妨设B为上顶点,F为右焦点,设D(x,y)由2,得(c,b)2(xc,y),即,解得,D(,)由D在椭圆上得:1, ,e. 【解析1】如图,, 作轴于点D1,则由,得,所以,即,由椭圆的第二定义得又由,得【解析2】设椭圆方程为第一标准形式,设,F分 BD所成的比为2,代入,10. (07全国2理)设分别是双曲线的左、右焦点,若双曲线上存在点,使且,则双曲线的离心率为( B )

7、 ABCD解11. 椭圆的左焦点为F,若过点F且倾斜角为的直线与椭圆交于A、B两点且F分向量BA的比为2/3,椭圆的离心率e为: 。本题通法是设直线方程,将其与椭圆方程联立,借助韦达定理将向量比转化为横坐标的比。思路简单,运算繁琐。下面介绍两种简单解法。解法(一):设点A,B,由焦半径公式可得,则,变形,所以因为直线倾斜角为,所以有,所以提示:本解法主要运用了圆锥曲线焦半径公式,借助焦半径公式将向量比转化为横坐标的关系。焦半径是圆锥曲线中的重要线段,巧妙地运用它解题,可以化繁为简,提高解题效率。一般来说,如果题目中涉及的弦如果为焦点弦,应优先考虑焦半径公式。解法(二): 12. (10辽宁理)

8、(20)(本小题满分12分)设椭圆C:的左焦点为F,过点F的直线与椭圆C相交于A,B两点,直线l的倾斜角为60o,.椭圆C的离心率 ;解:设,由题意知0,0.()直线l的方程为 ,其中.联立得解得 因为,所以.即 得离心率 . 6分13. A是椭圆长轴的一个端点,O是椭圆的中心,若椭圆上存在一点P,使OPA=,则椭圆离心率的范围是_.解析:设椭圆方程为=1(ab0),以OA为直径的圆:x2ax+y2=0,两式联立消y得x2ax+b2=0.即e2x2ax+b2=0,该方程有一解x2,一解为a,由韦达定理x2=a,0x2a,即0aae1.答案:e114. 在椭圆上有一点M,是椭圆的两个焦点,若,椭

9、圆的离心率的取值范围是; 解析: 由椭圆的定义,可得 又,所以是方程的两根,由, 可得,即所以,所以椭圆离心率的取值范围是15. (08湖南)若双曲线(a0,b0)上横坐标为的点到右焦点的距离大于它到左准线的距离,则双曲线离心率的取值范围是A.(1,2)B.(2,+)C.(1,5)D. (5,+)解析 由题意可知即解得故选B. 16.(07北京)椭圆的焦点为,两条准线与轴的交点分别为,若,则该椭圆离心率的取值范围是()解析 由题意得故选D. 17.(07湖南)设分别是椭圆()的左、右焦点,若在其右准线上存在使线段的中垂线过点,则椭圆离心率的取值范围是( )ABCD.分析 通过题设条件可得,求离

10、心率的取值范围需建立不等关系,如何建立?解析:线段的中垂线过点, ,又点P在右准线上,即,故选D.点评 建立不等关系是解决问题的难点,而借助平面几何知识相对来说比较简便.18. (08福建理)双曲线(a0,b0)的两个焦点为F1、F2,若P为其上一点,且|PF1|=2|PF2|,则双曲线离心率的取值范围为(B)A.(1,3)B.C.(3,+)D.分析 求双曲线离心率的取值范围需建立不等关系,题设是双曲线一点与两焦点之间关系应想到用双曲线第一定义.如何找不等关系呢?利用第二定义及焦半径判断解析:|PF1|=2|PF2|,|PF1|-|PF2|=|PF2|=,|PF2|即所以双曲线离心率的取值范围

11、为,故选B.解2 如图2所示,设,.当点P在右顶点处有.,.选B.小结 本题通过设角和利用余弦定理,将双曲线的离心率用三角函数的形式表示出来,通过求角的余弦值的范围,从而求得离心率的范围.点评:本题建立不等关系是难点,如果记住一些双曲线重要结论(双曲线上任一点到其对应焦点的距离不小于)则可建立不等关系使问题迎刃而解. 19.(08江西理)已知、是椭圆的两个焦点,满足的点总在椭圆内部,则椭圆离心率的取值范围是(C)A B C D解 据题意可知,M是直角,则垂足M的轨迹是以焦距为直径的圆.所以.又,所以.选C.小结 本题是最常见的求离心率范围的问题,其方法就是根据已知条件,直接列出关于 a,b,c

12、间的不等量关系,然后利用a,b,c间的平方关系化为关于a,c的齐次不等式,除以即为关于离心率e的一元二次不等式,解不等式,再结合椭圆或双曲线的离心率的范围,就得到了离心率的取值范围.20. (04重庆)已知双曲线的左,右焦点分别为,点P在双曲线的右支上,且,则此双曲线的离心率e的最大值为:( )A B C D |PF1|=4PF2|,|PF1|-|PF2|=3|PF2|=,|PF2|即所以双曲线离心率的取值范围为,故选B.21. 已知,分别为的左、右焦点,P为双曲线右支上任一点,若的最小值为,则该双曲线的离心率的取值范围是( ) A B C D解析 ,欲使最小值为,需右支上存在一点P,使,而即

13、所以.22. 已知椭圆右顶为A,点P在椭圆上,O为坐标原点,且OP垂直于PA,椭圆的离心率e的取值范围是; 。 解:设P点坐标为(),则有消去得若利用求根公式求运算复杂,应注意到方程的一个根为a,由根与系数关系知由得23. 椭圆:的两焦点为,椭圆上存在点使. 求椭圆离心率的取值范围 ;解析 设将代入得 求得 .点评:中,是椭圆中建立不等关系的重要依据,在求解参数范围问题中经常使用,应给予重视.24. (06福建)已知双曲线的右焦点为F,若过点F且倾斜角为的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是(A)(B)(C)(D)解析 欲使过点F且倾斜角为的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率, ,即即即故选C.25. (04全国)设双曲线C:相交于两个不同的点A、B.求双曲线C的离心率e的取值范围: 解析 由C与相交于两个不同的点,故知方程组有两个不同的实数解.消去y并整理得 (1a2)x2+2a2x2a2=0. 所以解得双曲线的离心率:所以双曲线的离心率取值范围是总结:在求解圆锥曲线离心率取值范围时,一定要认真分析题设条件,合理建立不等关系,把握好圆锥曲线的相关性质,记住一些常见结论、不等关系,在做题时不断总

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲 > 社会民生

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号