课题讲解《高等数学第一章》

上传人:汽*** 文档编号:562719734 上传时间:2024-01-31 格式:DOC 页数:7 大小:955.51KB
返回 下载 相关 举报
课题讲解《高等数学第一章》_第1页
第1页 / 共7页
课题讲解《高等数学第一章》_第2页
第2页 / 共7页
课题讲解《高等数学第一章》_第3页
第3页 / 共7页
课题讲解《高等数学第一章》_第4页
第4页 / 共7页
课题讲解《高等数学第一章》_第5页
第5页 / 共7页
点击查看更多>>
资源描述

《课题讲解《高等数学第一章》》由会员分享,可在线阅读,更多相关《课题讲解《高等数学第一章》(7页珍藏版)》请在金锄头文库上搜索。

1、 第一章、函数、极限和连续(22分左右)第一节、函数(不单独考,了解即可)一、复合函数:要会判断一个复合函数是由哪几个简单函数复合而成的。例如:是由,和这三个简单函数复合而成.例如:是由,和这三个简单函数复合而成.该部分是后面求导的关键!二、基本初等函数:(1)常值函数: (2)幂函数: (3)指数函数: (4)对数函数: (5)三角函数:,(6)反三角函数:,其中: (正割函数) , (余割函数) 三、初等函数:由基本初等函数经过有限次的四则运算和复合运算,并能用一个解析式表示的函数称为初等函数。他是高等数学的主要研究对象!第二节、无穷小与无穷大(有时选择题会单独考到,也是后面求极限的基础)

2、一、无穷小1、定义:以0为极限的量称无穷小量。注意:(1)一个变量否是无穷小量与他的自变量的变化趋势紧密相关。(2)只有0能能作为无穷小的唯一常量,千万不能将无穷小与很小的常量混为一谈。例1:极限,即当时,变量是无穷小;但是当时,就不是无穷小,因为此时他的极限值不为零。所以表述无穷小时必须指明自变量的变化趋势。例2:例变量在给定的变化过程中为无穷小的是( ).A、 B、 C、 D、E、 F、 G、 H、答案:选C、E、F、H ,因为上述选项的极限值均为零!二、无穷大1、定义:当(或)时,无限地增大或无限减小,则称是当(或)的无穷大。注意:(1)无穷大是变量,不能与的常量混为一谈。 (2)无限增

3、大是正无穷大(),无限减小是负无穷大()。三、无穷小和无穷大的关系:若为无穷大,则为无穷小;若为无穷小(0),则为无穷大例如:当时,为无穷小,则为无穷大。 当时,为无穷大,则为无穷小。第三节、极限的运算方法(重中之重!选择、填空和解答题都会考到) 一、直接代入法:对于一般的极限式(即非未定式),只要将代入到函数表达式中,函数值即是极限值。注意:(1)常数极限等于他本身,与自变量的变化趋势无关.即,为任意常数(2)求极限时首先考虑用代入法,但是该方法只能针对的时候,而时则不能用代入法,因为是变量,并非实数! 例1: , , , ,例2:=例3:=例4:=二、未定式极限的运算法(重点,每年必考一题

4、!)1、未定式定义:我们把、,等极限式称为未定式,因为它们的极限值是不确定的,可能是无穷小,可能是不为零的常数,也可能是无穷大。注意:确定式是指极限值是确定的一个值,不用通过计算就可以推断出。2、四则运算中常见的几个未定式和确定式(1), , , 为未定式(2)为未定式, 为未定式, , 为未定式上述和下述的都代表无穷小,即极限值为零的量。3、几个重要未定式的计算方法(1)对于未定式:分子、分母提取公因式,然后消去公因式后,将代入后函数值即是极限值。(对于分子、分母有根号的特殊情况,要先消去根号,然后提取公因式)(2)对于未定式:分子、分母同时除以未知量的最高次幂,然后利用无穷大的倒数是无穷小

5、的这一关系进行计算。(3)对于未定式:先通分将转化成或的形式,然后再用上述或的计算方法进行计算。例1:计算. 未定式,提取公因式解:原式= 例2:计算. 未定式,提取公因式解:原式= = 例3:计算. 未定式,先去根号再提取公因式解:原式=例4:计算. 未定式,分子分母同除以解:原式= 无穷大倒数是无穷小,因此分子是0分母是2例5:计算. 未定式,先求极限再开三次方解:原式=例6:计算. 未定式,先通分,后计算解:原式=注意常用的几个代数转换公式: 三、利用两个重要的极限 (重点掌握公式,一般考选择、填空)1、公式:=1 (把结论记住即可,重点掌握后面的等价无穷小的替换)2、公式:= 或 =

6、(1)适用范围:一般用于“” 未定式的极限式(2)解题方法: 通常用换元法,先将复杂的变量换元成新变量t,再将原极限式中的变量新变量t的进行代换,然后转化为公式的形式,最后进行计算。注意:于换元时引入了新变量,要求出新变量的变化趋势。例1:计算. 未定式,先换元然后用公式求解解:令,得,即 将复杂的变量换元成新变量t当时, 求出新变量的变化趋势所以原式= 转换成新变量的极限式后再用公式求例2:计算. 未定式,先换元然后用公式求解解:令,得,即 先换元当时, 求出新变量的变化趋势所以原式=四、利用等价无穷小的代换求极限(重点、每年必考一题!)1、等价无穷小的定义:设和是同一变化过程中的两个无穷小

7、,即如果=1,称与是等价无穷小,记作.例1:由公式可知极限=1 ,所以当时,与是等价无穷小.例2:当时,函数与是等价无穷小,则= .2、用等价无穷小的代换求极限(1)定理:设、均为无穷小,又,且存在则= 或 注意:利用等价无穷小的代换求极限能起到简化运算的作用,但是等价无穷小的代换只能对分子、分母的乘除因子进行代换,不能对分子、分母的加减式子进行代换。(2)常用的等价无穷小代换(7个):当时,, , , , , 注意:这7个等价无穷小务必熟记,是我们做一些极限题目的必备“工具”。在使用时要注意这7个等价无穷小的代换前提是的时候,代换时也要根据题意要灵活运用!例1:当时,2,, , ,,例2:极

8、限= 用2等价代换 极限= 用等价代换例3:计算.解:当时, 等价代换所以原式= 计算例4:计算.解:当时, 等价代换所以原式= 计算例5:计算.解:当时, 等价代换所以原式= 先去根号,再计算第四节、函数的连续性(每年考一题,都以选择或填空形式出现)一、函数的连续性(往往考已知函数在某点处连续,求一个未知量常数)1、函数在点处的连续定义:设函数在的某范围内有定义,如果函数满足 , 则称在点处连续2、 函数在点处连续的充要条件 即函数在既满足左连续又满足右连续(左连续对应左极限,右连续对应右极限) ,例1:设函数= 在处连续,求. (分段函数) , 解:因为函数在处连续,即满足因为=且=,所以=. , 例2:设函数= 在处连续,求. (分段函数) ,解:因为函数在处连续,因为=,=,且=所以. , 例3:设函数= 在处连续,求. ,解:因为函数在处连续,因为= , =且= , 所以注:以上三题均为分段函数,由于数学编辑器问题,大括号打不出来,请同学们自己填加!

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 中学教育 > 试题/考题 > 初中试题/考题

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号