泡沫一般分为三种形式

上传人:公**** 文档编号:562355320 上传时间:2022-08-08 格式:DOC 页数:32 大小:136.50KB
返回 下载 相关 举报
泡沫一般分为三种形式_第1页
第1页 / 共32页
泡沫一般分为三种形式_第2页
第2页 / 共32页
泡沫一般分为三种形式_第3页
第3页 / 共32页
泡沫一般分为三种形式_第4页
第4页 / 共32页
泡沫一般分为三种形式_第5页
第5页 / 共32页
点击查看更多>>
资源描述

《泡沫一般分为三种形式》由会员分享,可在线阅读,更多相关《泡沫一般分为三种形式(32页珍藏版)》请在金锄头文库上搜索。

1、泡沫一般分为三种形式:启动泡沫。活性污泥工艺运行启动初期,由于污水中含有一些表面活性物质,易引起表面泡沫。但随着活性污泥的成熟,这些表面活性物质经生物降解,泡沫现象会逐渐消失。反硝化泡沫。如果污水厂进行硝化反应,则在沉淀池或曝气不足的地方会发生反硝化作用,产生氮等气泡而带动部分污泥上浮,出现泡沫现象。生物泡沫。由于丝状微生物的异常生长,与气泡、絮体颗粒混合而成的泡沫具有稳定、持续、较难控制的特点。生物泡沫对污水厂的运行是非常不利的:在曝气池或二沉池中出现大量丝状微生物,水面上漂浮、积聚大量泡沫;造成出水有机物浓度和悬浮固体升高;产生恶臭或不良有害气体;降低机械曝气方式的氧转移效率;可能造成后期

2、污泥消化时产生大量表面泡沫。为什么曝气池污泥要回流1,可以提高生化系统的抗冲击能力,避免进水冲击对生化系统的影响。1,维持,厌氧,好氧断等的污泥活性,微生物数量,保证生化系统的污泥浓度。3.回流至缺氧段可为兼性厌氧菌提供所需的氧气,如2楼所说。4,通过回流可控制各反应池的MLSS,以这生产过程中控制各阶段的反应。保证生产。 如果是非丝状菌膨胀,主要发生在废水水温较低而污泥负荷太高的时候,此时细菌吸附了大量有机物,来不及代谢,在胞外积贮大量高粘性的多糖物质,使得表面附着物大量增加,很难沉淀压缩。而当氮严重缺乏时,也有可产生膨胀现象。因为若缺氮,微生物便于工作不能充分利用碳源合成细胞物质,过量的碳

3、源将被转弯为多糖类胞外贮存物,这种贮存物是高度亲水型化合物,易形成结合水,从而影响污泥的沉降性能,产生高粘性的污泥膨胀。非丝状菌污泥膨胀发生时其生化处理效能仍较高,出水也还比较清澈,污泥镜检也看不到丝状菌。非丝状菌膨胀发生情况较少,且危害并不十分严重。根据泡沫形成的机理及其影响因素,可采用物理化学和生物的方法对泡沫进行控制。控制泡沫特别是生物泡沫的实质并非消除Microthrix parvicella等细菌的产生,主要途径就是在曝气系统中建立一个不适宜丝状菌异常生长的环境,抑制其在活性污泥中的过度增殖,使丝状菌与絮凝体形成菌保持平衡的比例生长。 1 物化方法控制泡沫 喷洒水 喷洒的水流或水珠能

4、打碎浮在水面的气泡,以减少泡沫。但不能根本消除泡沫现象,是一种最常用最简便的物理方法。 投加化学药剂 阳离子(PAM)聚丙烯酰胺(acrylamidebased cationic polymer)是一种常用的消泡剂,工程实例中,把阳离子聚丙烯酰胺投加于二沉池进水管中,其既有抑制Nocardioform actinomycetes生长的作用,又有通过回流污泥进入曝气池消除污水中表面活性剂及表面活性物质极性非极性特点的作用。由于上述两点的存在,新的稳定泡沫难于大量生成,而在水面上的泡沫层由于水面紊动,泡沫受剪力作用不断破碎,表面泡沫水膜由于水分不断蒸发,泡沫不断破碎,泡沫层也逐渐消失10。 低浓度

5、的H2O2也是一种较常用的泡沫消除剂,在活性污泥中投加当投加低浓度H2O2时,其浓度不足以杀死菌胶团表面伸出的丝状菌,只能氧化部分生物残渣和消除代谢过程产生的毒素,净化菌胶团细菌生长的环境,促进了菌胶团细菌优势生长, 使菌胶团菌和丝状菌的生长达到了新的平衡,从而达到控制生物泡沫的目的,而出水水质并未恶化。H2O2应投加于回流污泥中,投加浓度为2025mg H2O2/(kg?MLSS)11。Yongwoo Hwang等通过污水厂观察、实验室试验以及现场应用,发现污水中的泡沫是典型的季节性出现的,代谢和动力学的调节并不能很成功的抑制Microthrix parvicella的过度生长和泡沫的产生,

6、经过与氯、阳离子聚丙烯酰胺两种化学药剂相比较,发现除丝状菌聚季铵碱(quaternary ammoniumbased antifilament polymer, AFP)是一种最有效的物理化学方法来抑制Microthrix parvicella的过度增殖,能有效的控制泡沫,并未给出水水质带来变化12。 另外,如氯、臭氧、聚乙二醇以及氯化铁和铜材酸洗液的混合药剂等均具有较强的氧化性,也可当作消泡剂使用。 2 生物方法控制泡沫 降低细胞平均停留时间 降低细胞平均停留时间是很有效的控制泡沫的方法,实质即利用丝状菌平均世代时间较长于絮凝体形成菌的特点,抑制丝状菌的过度增殖,细胞平均停留时间越短,丝状菌

7、越少,泡沫也越少。 调节污水pH值 研究表明,最适宜Nocardia amarae生长的pH值为7.8,最适宜Microthrix parvicella生长的pH值为7.78.0,当pH值从7.0降为5.05.6时,能有效控制这些微生物的过度生长,减少泡沫的形成13。 降低曝气的空气输入率 降低了曝气的空气输入率,一是能降低曝气池中气提强度,减缓了丝状菌的上浮速度;二是能降低曝气池中的溶解氧浓度,Nocardia amarae是严格的好氧菌,在缺氧或厌氧条件下,不易生长,但 Microthrix parvicella却能忍受缺氧状态。再者,降低曝气池的空气输入量也相应的降低了微气泡的生成量,即

8、减少丝状菌和放线菌机体上浮的载体,从而延缓泡沫的形成。如何观察污水厂生化池中的微生物取带有污泥的水样,就是要浑浊些的,然后做镜检啊,就是制作玻片,用显微镜观察即可,一般污水站化验室都配备有的。一般好像40倍的物镜就可以了。基本能看到轮虫。线虫等。还有部分藻类!污水处理中爆气池如何快速提高微生物数量,我是新手,请多指教采用闷曝的办法,最快的是接种,去别的污水处理场拉剩余污泥,直接放进曝气池,就可以了,这是最快的,最好是与你们污水处理厂处理的污水性质相同或者相近的最好请问污水处理时大量缩短曝气时间会导致微生物死亡吗?会的,我是污水处理的施工方,厂方为了省点电钱把风机每隔两个小时就停三个小时,现象出

9、现了,第一天曝气池污泥颜色变黑灰缺氧,二沉池出水水质COD55,氨氮2.4。第二天,曝气池污泥上浮,二沉池出水水质COD80,氨氮3.2。持续一周我们曝气池弹性填料上挂的微生物膜层脱落,曝气池严重少泥,二沉池由于曝气池死亡的泥进入而把底层的正常污泥带上浮,导致二沉池出水不达标。COD240。氨氮9.2。总磷7以上。悬浮物140。所以建议曝气池不能缩短曝气时间,否则直接影响出水。给你一个建议:要是为了节能的话就把风机内的配置电机更换。答复完毕。AAO 法工艺介绍AAO 生物脱氮工艺将传统的活性污泥、生物硝化工艺结合起来, 取长补短, 更有效的去除水中的有机物。此法即是通常所说的厌氧- 缺氧- 好

10、氧法, 污水依次经过厌氧池- 缺氧池- 好氧池被降解。工艺流程见图 1。2 AAO 法污水处理开工调试AAO 法污水处理开工运行前必须先进行好氧活性污泥的培养驯化, 污泥的培养驯化过程如下。2.1 培养过程(1) 污泥买来后, 将其投入检查合格的曝气池内, 注入清水, 此时水温应保持在 2530之间,温度不能太高, 应模拟正常生产时的温度。冬天温度最少也要控制在 20以上。因为在 2028之间是细菌繁殖的最佳温度, 注入温度适宜的清水后,启动风机曝气, 风量不能大, 沉淀后放掉上清液,以洗掉污泥中的化学药剂和细菌的毒素, 清洗的次数看具体情况而定。(2) 开始培养时, 加入过滤后的粪清, 测一

11、下曝气池化学需氧量 COD, 达到 500700mg/L 即可。同时加入磷盐, 按纯磷 5mg/L 废水来计算, 再加入葡萄糖。其中, 糖类是能量, 磷盐和粪清是养料。尿素视氮的含量情况适当添加。培养时稀释水可以少加一点。(3) 曝气后 10min, 测一下溶解氧和 COD。培养之初因污泥没有活性, 对溶解氧及 COD 的消耗很少, 曝气量要适当调小, 只要泥不沉就行。还可以考虑间隔曝气, 时间看情况而定。(4) 曝气后需做一些比较工作, 就是通过测定30min 沉降比, 计算泥量, 以便观察污泥的生长情况。(5) 培养一段时间后, 如果发现 COD 或溶解氧与投入之初有明显减小, 就应增加

12、COD 的浓度,同时控制好溶解氧在 12mg/L, 以免细菌得不到足够的营养而自身分解。曝气量不能过大, 以免把没有活性的污泥冲散, 使细菌流失死亡。(6) 随着细菌的活性增加, 会排出一定量的毒物, 这时就隔一天换一定量的水, 在这个过程中要做好活性污泥量的比较工作, 看看泥量是否增加,COD 每天早晨和傍晚各做一次, 以比较所消耗的COD。(7) 进行镜检工作。如果观察到大量的透明状的细菌, 说明这时的细菌很活跃, 但还没有形成活性污泥, 因为没有结合好。在以后发现了菌胶团且沉降性能好, 此时说明活性污泥培养成功。观察污泥用低倍显微镜 (160 倍) 就可以了。2A2/O工艺的固有缺欠A2

13、/O工艺的内在固有缺欠就是硝化菌、反硝化菌和聚磷菌在有机负荷、泥龄以及碳源需求上存在着矛盾和竞争,很难在同一系统中同时获得氮、磷的高效去除,阻碍着生物除磷脱氮技术的应用。其中最主要的问题是厌氧环境下反硝化与释磷对碳源的竞争。根据生物除磷原理,在厌氧条件下,聚磷菌通过菌种间的协作,将有机物转化为挥发酸,借助水解聚磷释放的能量将之吸收到体内,并以聚羟基丁酸PHB形式贮存,提供后续好氧条件下过量摄磷和自身增殖所需的碳源和能量。如果厌氧区存在较多的硝酸盐,反硝化菌会以有机物为电子供体进行反硝化,消耗进水中有机碳源,影响厌氧产物PHB的合成,进而影响到后续除磷效果。一般而言,要同时达到氮、磷的去除目的,

14、城市污水中碳氮比(COD/N)至少为452。当城市污水中碳源低于此要求时,由于该工艺把缺氧反硝化置于厌氧释磷之后,反硝化效果受到碳源量的限制,大量的未被反硝化的硝酸盐随回流污泥进入厌氧区,干扰厌氧释磷的正常进行(有时甚至会导致聚磷菌直接吸磷),最终影响到整个营养盐去除系统的稳定运行。为解决A2/O工艺碳源不足及其引起的硝酸盐进入厌氧区干扰释磷的问题,研究者们进行了大量工艺改进,归纳起来主要有三个方面:一是解决硝酸盐干扰释磷问题而提出的工艺,如:UCT、MUCT等工艺;二是直接针对碳源不足而采取解决措施,如补充碳源、改变进水方式、为反硝化和除磷重新分配碳源,进而形成的一些工艺,如:JHB工艺、倒

15、置A2/O工艺;三是随着反硝化除磷细菌DPB的发现形成的以厌氧污泥中PHB为反硝化碳源的工艺,如:Dephanox工艺和双污泥系统的除磷脱氮工艺。3硝酸盐干扰释磷问题的工艺对策南非UCT(University of Cape Town,1983)工艺(见图6)将A2/O中的污泥回流由厌氧区改到缺氧区,使污泥经反硝化后再回流至厌氧区,减少了回流污泥中硝酸盐和溶解氧含量。当UCT工艺作为阶段反应器在水力停留时间较短和低泥龄下运行时在美国被称为VIP(Virginia Initiative Process,1987)工艺3。与A2/O工艺相比,UCT工艺在适当的COD/TKN比例下,缺氧区的反硝化可使厌氧区回流混合液中硝酸盐含量接近于零。当进水TKN/COD较高时,缺氧区无法实现完全的脱氮,仍有部分硝酸盐进入厌氧区,因此又产生改良UCT工艺MUCT工艺(见图7)。MUCT工艺有两个缺氧池,前一个接受二沉池回流污泥,后一个接受好氧区硝化混合液,使污泥的脱氮与混合液的脱氮完全分开,进一步减少硝酸盐进入厌氧区的可能。 4弥补碳源不足的工艺对策41补

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > 工作计划

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号