第七章 GPS测量的误差来源及其影响

上传人:汽*** 文档编号:562273116 上传时间:2023-09-17 格式:DOCX 页数:15 大小:41.24KB
返回 下载 相关 举报
第七章 GPS测量的误差来源及其影响_第1页
第1页 / 共15页
第七章 GPS测量的误差来源及其影响_第2页
第2页 / 共15页
第七章 GPS测量的误差来源及其影响_第3页
第3页 / 共15页
第七章 GPS测量的误差来源及其影响_第4页
第4页 / 共15页
第七章 GPS测量的误差来源及其影响_第5页
第5页 / 共15页
点击查看更多>>
资源描述

《第七章 GPS测量的误差来源及其影响》由会员分享,可在线阅读,更多相关《第七章 GPS测量的误差来源及其影响(15页珍藏版)》请在金锄头文库上搜索。

1、7.1 GPS测量主要误差分类误差主要来源于:GPS卫星、卫星信号的传播过程和地面设 备。高精度的GPS测量中(地球动力学研究),还应注意到 与地球整体运动有关的地球潮汐、负荷潮及相对论效应等的 影响。GPS测量误差的分类及对距离测量的影响:偶然误差:信号的多路径效应系统误差:星历误差、卫星钟差、接收机钟差以及大气折射 的误差等。系统误差的影响比偶然误差大的多,但有一定规律性,可采 取一定的措施加以消除。7.2与信号传播有关的误差7.2.1电离层折射50-1000km大气层,由于受到太阳等天体 各种射线辐射,产 生强烈的电离形成大量的自由电子和正离子。当GPS信号通 过电离层时,如同其他电磁波

2、一样,信号的路径会发生弯曲, 传播速度也会发生变化。所以用信号传播时间乘以真空中光 速得到的距离就不会等于卫星至接收机间的几何距离,这种 偏差叫电离层折射误差。物体的分子不需外力,而靠自己(分子)的运动,向另外地 方移动或进入另一物体内的现象称弥散或扩散。固体、液体 和气体都有弥散现象。但由于气体分子间距离大,分子力小,分子运动速度大,所以气体的弥散作用最明显电磁波在电离层传播时,其速度与频率有关,电离层的群折 射率为:n = 1 +10.28N f -2Ge=C (1 - 40.28Nf - 2)(7-2) neGn为电子密度(电子数/m2)ef为信号的频率(Hz)为真空的光速 调制码以群速

3、度VG在电离层中传播,若传播时间为人t, 么卫星到达接收机的真正距离S为:S = f v dt = f C(1 40.28Nf-2)dt =-G-ec-At C40.28f 2f N ds =s e+ dion(73)说明信号传播时间At和光速C算得的距离p = C -At还 必须加上电离层改正项:d.ionf N ds表示传播路径s对电子密度N进行积分,s ee即电子总量。可见电离层改正的大小主要取决于电子总量 和信号频率。2减弱电离层影响的措施(1) 利用双频观测 电离层所产生的折射改正数与电磁波频率f的平方成反比。如果分别用两个频率fl和f2来发射信号,这两个不同频率 的信号将沿同一路径

4、到达接收机。积分1 N ds虽然无法 s, e确定,但对这两个不同频率来讲都是相同的。令一C40.28j Nds = A 则d。S, e,则 ion f 2 AGPS 卫星采用两个频率 f1=1575.42MHz,f2=1227.60MHz,调制在这两个波上的Pr s = p + A / f 2 11e = p + A / f222两式子相减有:码分别为(7-5)和P2,于是有:Ap = p-p = A12 fr 、-f 22L丿2d (1)2 -1 = 06469dionlionl f(7-6)d= 154573( p - p )ionl12d= 2.54573(p -p )(7-7)ion

5、 212 由于调制在两个载波上的P码测距时,除电离层折射的影响 不同外,其余误差影响都是相同的,所以A P实际上就是P1 和P2码测得的伪距之差。所以用户采用双频接收机进行伪 距测量,就能利用电离层折射和信号频率有关的特性,从两 个伪距观测值中求得电离层折射改正量,最后得:s = p + d =p +1.54573Ap1ion11(7-8)s = p + d =p + 2.54573Ap2ion 22双频载波相位观测值9 和 2的电离层折射改正与上述分析 方法类似,但和伪距测量改正有两点不同:一是电离层折射 改正的符号相反;二是要引入整周未知数N0.(2) 利用电离层改正模型加以修正为了进行高

6、精度卫星导航和定位,普遍采用双频技术,可有 效地减弱电离层折射的影响,但在电子含量很大,卫星的高 度角又较小时求得的电离层延迟改正中的误差有可能达几 厘米。为了满足更高精度GPS测量的要求,Fritzk、Brunner 等人提出了电离层延迟改正模型。模型考虑了折射率n中的 高阶项影响以及地磁场的影响,并且是沿着信号传播路径来 进行积分。计算结果表明,无论在何种情况下改进模型的精 度均优于2mm。对于单频接收机,减弱电离层影响,一般采用导航电文提供 的电离层模型加以改正。这种电离层改正是把白天的电离层延迟看成是余弦波中正 的部分,而把晚上的电离层延迟看成是一个常数,其中晚间 的电离层延迟量(DC

7、)及余弦波的相位项(t)均按常数来p处理。而余弦波的振幅A和周期P则分别用一个三阶多项式 来表示,任一时刻t的电离层延迟T。gT = DC + A cos (tT )gppDC = 5ns,T 二 14h (地方时)pA =工a申n m 宅p =乙申n mn=0rxt = UT + pk Tg=| DC + A(1 x 2+劝儿n(7- g224 X12242上述公式在推导过程中作了近似处理,使计算简单。但是是种估算,由于影响电离层折射的因素很多,机制很复杂, 所以无法建立严格的数学模型。从参数的选取上可知,电离 层改正模型基本上是一种经验估算公式。加之全球采用一组 系数,因此这种模型只能大体

8、反映全球的平均状况,与各地 的实际情况会有一定差异。实测表明,可消除电离层折射 75%。(3)利用同步观测值求差小于20km的效果明显,这时电离层折射改正后基线长度的 残差一般为ixio_6,所以在短距离的相对定位,使用单频接收 机也可达到相当高的精度。不过,随着基线长度的增加,其 精度随之明显降低。2. 对流层折射的改正模型由于对流层折射对GPS信号传播的影响情况比较复杂,一般 采用改正模型进行削弱。对流层折射现象对流层的折射与地面气候、大气压力、温度赫尔湿度变化密 切相关,这也使得对流层折射比电离层折射更复杂。天顶最小,当在地面方向(高度角为10),其影响可达20m。3. 减弱对流层折射或

9、残差影响的主要措施(1)模型加以改正(2)引入描述对流层影响的附加待估参数,在数据处理中 一并求得。(3)同步观测值求差(4)利用水汽辐射计直接测定信号传播影响。精度优于1cm。 7.2.3多路径误差在GPS测量中,如果测站周围的反射物所反射的卫星信号(反 射波)进入接收机天线,这就将和直接来自卫星的信号(直 接波)产生干涉,从而使观测值偏离真值产生所谓的“多路 径误差”多路径效应。由于反射波一部分能量被反射面吸收、GPS接收天线为右旋 圆极化结构,也有抑制反射波的功能,所以反射波除了存在 相位延迟外,信号强度一般也会减少。低频信号。2. 载波相位测量中的多路径误差 设直接波信号为:(7-23

10、)S = U cos o td反射信号的数字表达式为:S =aU COS(Ot +0)(7_24)r直接波和反射波叠加后的信号:S = pu cos(ot + 9)(7-25)P 二(1 + 2a cos 0 + a 2 )1/2申二 arctana sin0 /(I + a cos0)(7-25)9即为载波相位测量中的多路径误差,对于(7-25)求导并令其等于零:dQ11+( )1+a cos 0(1 + a cos 0)心 cos 0 +a 2 sin2 0(1 + a cos 0 )2a cos0 +a2(1 + a cos0 )(1 + a cos0 +a sin0) 申 = arcs

11、in a(7-26)a sin 01 + a cos 0多路径误差为:a Q 九s = A = arctan 2k2kL1最大为4.8m, L2最大为6.1m。3削弱多路径误差的方法(1)选择合适的站址7.3与卫星有关的误差7.3.1卫星星历误差由于卫星运行时受到复杂且多种摄动力的影像,通过地面监 测站又很难充分可靠地测定这些作用力并掌握它们的运动 规律,因此星历预报时候会产生较大误差,在一个观测时间 段星历误差属于系统误差,是一种起算数据误差,严重影响 单点定位的精度,也是精密相对定位中的重要误差来源。1星历数据来源(1) 广播星历导航电文中携带的信息,根据美国控制中心跟踪站的观测数 据进行

12、外推,通过GPS卫星发播的一种预报星历,由于我们 尚不能了解卫星各种摄动因素的大小及变化规律,所以预报 星历存在较大误差。从卫星电文中解译出来的星历参数,17 个参数,每小时更换一次。卫星位置精度20-40m,有时可达 80m。均匀跟踪网进行测轨和预报,此时星历参数计算的卫 星坐标可能精确到5-10m。(2) 实测星历:区域定轨,1-2星期得到,精度较高。2.星历误差对定位的影响(1) 单点定位(2) 对相对定位而言星历误差测站之间具有很强的相关性,所以求差后, 共同的影响可自行消去,从而获得高精度的相对坐标。星历 误差对定位的影响一般采用下列公式估算:db _ dsb pb为基线长,db为由

13、于卫星星历误差引起的基线误差,ds 为星历误差,p为卫星至测站的距离,吐为星历的相对误差。p实践证明,经过数小时观测后基线的相对误差,约为星历相 对误差的四分之一左右。SA政策实施中,基线相对误差可能 会增大,但就广播星历而言,也能保证12 X10 -6的相对定位精 度。3. 解决办法(1) 建立自己的卫星跟踪网独立定轨(2) 在平差模型中把卫星星历给出的卫星轨道作为初始值,视其改正数为未知数。通过平差同时求得测站位 置及轨道的改正数,这种方法就称为轨道松弛法。(3) 同步观测值求差法。7.3.2卫星钟的钟误差卫星钟的钟差包括由钟差、频偏、频漂等产生的误差, 也包含钟的随机误差。1ms,300

14、km误差。卫星钟的这种偏差,一般可表示为以下二阶多项式的形 式:At = a + a (t t ) + a (t t )2s01020系数分别表示钟在t时刻的钟差、钟速及钟速的变率。0这些数值由卫星的地面控制系统根据前一段时间的跟踪资 料和GPS标准时推算出来的,并通过卫星的导航电文提供给 用户。20ns,6m,在求差。7.3.3相对论效应7.4与接收机有关的误差接收机钟与卫星钟间的同步差为1卩s,则引起的等效距离误 差约为300m。减弱接收机钟差的方法:(1 )把每个观测时刻的接收机钟差当做一个独立的未知 数,在数据处理中与观测站的位置参数一并求解。(2) 认为各观测时刻接收机钟差是相关的,像卫星钟那样, 将接收机钟差表示为时间多项式,并在观测量的平差计算中 求解多项式系数。可大大减少未知数,该方法成功与否关键 在于钟误差模型的有效程度。(3) 通过卫星间求差消除。7.4.2接收机位置误差接收机天线相位中心相对于测站标石中心位置的误差,叫做 接收机位置误差。这里包括天线的置平和对中误差,量取天 线高误差。如当天线高度为1.6m,置平误差为0.1。,可能 会产生的对中误差为3mm。精密定位中采用强制对中装置的 观测墩。7.4.4 GPS天线相位中心偏差GPS观测中,观测值都是以接收机天线的相位中心位

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 学术论文 > 其它学术论文

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号