实模式和保护模式的区别

上传人:m**** 文档编号:562253459 上传时间:2023-05-06 格式:DOC 页数:4 大小:39.50KB
返回 下载 相关 举报
实模式和保护模式的区别_第1页
第1页 / 共4页
实模式和保护模式的区别_第2页
第2页 / 共4页
实模式和保护模式的区别_第3页
第3页 / 共4页
实模式和保护模式的区别_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

《实模式和保护模式的区别》由会员分享,可在线阅读,更多相关《实模式和保护模式的区别(4页珍藏版)》请在金锄头文库上搜索。

1、实模式和保护模式的区别实模式和保护模式的区别 2009-08-31 20:19 551人阅读 评论(1) 收藏 举报 从80386开始,cpu有三种工作方式:实模式,保护模式和虚拟8086模式。只有在刚刚启动的时候是real-mode,等到linux操作系统运行起来以后就运行在保护模式(所以存在一个启动时的模式转换问题)。 实模式只能访问地址在1M以下的内存称为常规内存,我们把地址在1M 以上的内存称为扩展内存。 在保护模式下,全部32条地址线有效,可寻址高达4G字节的物理地址空间; 扩充的存储器分段管理机制和可选的存储器分页管理机制,不仅为存储器共享和保护提供了硬件支持,而且为实现虚拟存储器

2、提供了硬件支持; 支持多任务,能够快速地进行任务切换和保护任务环境; 4个特权级和完善的特权检查机制,既能实现资源共享又能保证代码和数据的安全和保密及任务的隔离; 支持虚拟8086方式,便于执行8086程序。1.虚拟8086模式是运行在保护模式中的实模式,为了在32位保护模式下执行纯16位程序。它不是一个真正的CPU模式,还属于保护模式。 2.保护模式同实模式的根本区别是进程内存受保护与否 。可寻址空间的区别只是这一原因的果。 实模式将整个物理内存看成分段的区域,程序代码和数据位于不同区域,系统程序和用户程序没有区别对待,而且每一个指针都是指向实在的物理地址。这样一来,用户程序的一个指针如果指

3、向了系统程序区域或其他用户程序区域,并改变了值,那么对于这个被修改的系统程序或用户程序,其后果就很可能是灾难性的。为了克服这种低劣的内存管理方式,处理器厂商开发出保护模式。这样,物理内存地址不能直接被程序访问,程序内部的地址(虚拟地址)要由操作系统转化为物理地址去访问,程序对此一无所知。 至此,进程(这时我们可以称程序为进程了)有了严格的边界,任何其他进程根本没有办法访问不属于自己的物理内存区域,甚至在自己的虚拟地址范围内也不是可以任意访问的,因为有一些虚拟区域已经被放进一些公共系统运行库。这些区域也不能随便修改,若修改就会有: SIGSEGV(linux 段错误);非法内存访问对话框(win

4、dows 对话框)。 CPU启动环境为16位实模式,之后可以切换到保护模式。但从保护模式无法切换回实模式 3.事实上,现在的64位奔腾4处理器,拥有三种基本模式和一种扩展模式, a)基本模式: *保护模式:纯32位保护执行环境。 *实模式:纯16位无保护执行环境。 *系统管理模式:当SMI引脚为有效进入系统管理模式,首先保存当前的CPU上下文。它有独立的地址空间,用来执行电源管理或系统安全方面的指令。 b)扩展模式:*IA-32e模式,64位操作系统运行在该模式。该模式有两种子模式: 1)*兼容模式:该模式下,64位操作系统运行在32位兼容环境,能正常运行16,32位应用程序就像基本的保护模式

5、一样,访问32位地址空间,但不能运行纯16位实模式程序(就是不能运行虚拟86模式程序了)。 2)*64位模式:在该模式下,处理器完全执行64位指令,使用64位地址空间和64操作数,运行16,32位程序必须切换到兼容模式。 IA-32e子模式的切换完全基于代码段寄存器。这样一来,运行在IA-32e模式中(64位)的OS完全可以无缝的运行所有16,32,64为应用程序,通过设置32位后的CS。2012-05-11 21:16:40|分类: 操作系统LINUX |标签: |字号大中小订阅 第一:实模式下程序的运行回顾程序运行的实质是什么?其实很简单,就是指令的执行,显然CPU是指令得以执行的硬件保障

6、,那么CPU如何知道指令在什么地方呢?80x86系列是使用CS寄存器配合IP寄存器来通知CPU指令在内存中的位置。程序指令在执行过程中一般还需要有各种数据,80x86系列有DS、ES、FS、GS、SS等用于指示不同用途的数据段在内存中的位置。程序可能需要调用系统的服务子程序,80x86系列使用中断机制来实现系统服务。总的来说,这些就是实模式下一个程序运行所需的主要内容(其它如跳转、返回、端口操作等相对来说比较次要。)第二:保护模式-从程序运行说起无论实模式还是保护模式,根本的问题还是程序如何在其中运行。因此我们在学习保护模式时应该时刻围绕这个问题来思考。和实模式下一样,保护模式下程序运行的实质

7、仍是“CPU执行指令,操作相关数据”,因此实模式下的各种代码段、数据段、堆栈段、中断服务程序仍然存在,且功能、作用不变。那么保护模式下最大的变化是什么呢?答案可能因人而异,我的答案是“地址转换方式”变化最大。第三:地址转换方式比较先看一下实模式下的地址转换方式,假设我们在ES中存入0x1000,DI中存入0xFFFF,那么ES:DI=0x1000*0x10+0xFFFF=0x1FFFF,这就是“左移4位加偏移”。那么如果在保护模式下呢?假设上面的数据不变ES=0x1000,DI=0xFFFF,现在ES:DI等于什么呢?公式如下:(注:0x1000=1000000000000b= 10 0000

8、 0000 0 00)ES:DI=全局描述符表中第0x200项描述符给出的段基址+0xFFFF现在比较一下,好象是不一样。再仔细看看,又好象没什么区别!为什么说没什么区别,因为我的想法是,既然ES中的内容都不是真正的段地址,凭什么实模式下称ES为“段寄存器”,而到了保护模式就说是“选择子”?其实它们都是一种映射,只是映射规则不同而已:在实模式下这个“地址转换方式”是“左移4位”;在保护模式下是“查全局/局部描述表”。前者是系统定义的映射方式,后者是用户自定义的转换方式,而它影响的都是“shadow register”。从函数的观点来看,前者是表达式函数,后者是列举式函数:实模式: F(es-s

9、egment)=segment |segment=es*0x10保护模式:F(es-segment)=segment |(es,segment)GDT/LDT其中GDT、LDT分别表示全局描述符表和局部描述符表。第四:保护模式基本组成保护模式最基本的组成部分是围绕着“地址转换方式”的变化增设了相应的机构。1、数据段前面说过,实模式下的各种代码段、数据段、堆栈段、中断服务程序仍然存在,我将它们统称为“数据段”,本文从此向下凡提到数据段都是使用这个定义。2、描述符保护模式下引入描述符来描述各种数据段,所有的描述符均为8个字节(0-7),由第5个字节说明描述符的类型,类型不同,描述符的结构也有所不同

10、。若干个描述符集中在一起组成描述符表,而描述符表本身也是一种数据段,也使用描述符进行描述。从现在起,“地址转换”由描述符表来完成,从这个意义上说,描述符表是一张地址转换函数表。3、选择子选择子是一个2字节的数,其16位,最低2位表示RPL,第3位表示查表是利用GDT(全局描述符表)还是LDT(局部描述符表)进行,最高13位给出了所需的描述符在描述符表中的地址。(注:13位正好足够寻址8K项)有了以上三个概念之后可以进一步工作了,现在程序的运行与实模式下完全一样!各段寄存器仍然给出一个“段值”,只是这个“假段值”到真正的段地址的转换不再是“左移4位”,而是利用描述符表来完成。但现在出现一个新的问

11、题是:系统如何知道GDT/LDT在内存中的位置呢?为了解决这个问题,显然需要引入新的寄存器用于指示GDT/LDT在内存中的位置。在80x86系列中引入了两个新寄存器GDR和LDR,其中GDR用于表示GDT在内存中的段地址和段限(就是表的大小),因此GDR是一个48位的寄存器,其中32位表示段地址,16位表示段限(最大64K,每个描述符8字节,故最多有64K/8=8K个描述符)。LDR用于表示LDT在内存中的位置,但是因为LDT本身也是一种数据段,它必须有一个描述符,且该描述符必须放在GDT中,因此LDR使用了与DS、ES、CS等相同的机制,其中只存放一个“选择子”,通过查GDT表获得LDT的真

12、正内存地址。对了,还有中断要考虑,在80x86系列中为中断服务提供中断/陷阱描述符,这些描述符构成中断描述符表(IDT),并引入一个48位的全地址寄存器存放IDT的内存地址。理论上IDT表同样可以有8K项,可是因为80x86只支持256个中断,因此IDT实际上最大只能有256项(2K大小)。第五:新要求-任务篇前面介绍了保护模式的基本问题,也是核心问题,解决了上面的问题,程序就可以在保护模式下运行了。但众所周知80286以后在保护模式下实现了对多任务的硬件支持。我的第一反应是:为什么不在实模式下支持多任务,是不能还是不愿?思考之后,我的答案是:实模式下能实现多任务(也许我错了:)。因为多任务的

13、关键是有了描述符,可以给出关于数据段的额外描述,如权限等,进而在这些附加信息的基础上进行相应的控制,而实模式下缺乏描述符,但假设我们规定各段的前2个字节或若干字节用于描述段的附加属性,我觉得和使用描述符这样的机制没有本质区别,如果再附加其他机制.基于上述考虑,我更倾向于认为任务是独立于保护模式之外的功能。下面我们来分析一下任务。任务的实质是什么呢?很简单,就是程序嘛!所谓任务的切换其实就是程序的切换!现在问题明朗了。实模式下程序一个接一个运行,因此程序运行的“环境”不必保存;保护模式下可能一个程序在运行过程中被暂停,转而执行下一个程序,我们要做什么?很容易想到保存程序运行的环境就行了(想想游戏程序的保存进度功能),比如各寄存器的值等。显然这些“环境”数据构成了一类新的数据段(即TSS)。延用前面的思路,给这类数据段设置描述符(TSS描述符),将该类描述符放在GDT中(不能放在LDT中,因为80x86不允许:),最后再加一个TR寄存器用于查表。TR是一个起“选择子”作用的寄存器,16位。好了,任务切换的基本工作就是将原任务的“环境”存入TSS数据段,更新TR寄存器,系统将自动查GDT表获得并装载新任务的“环境”,然后转到新任务执行。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲 > 科普知识

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号