生物化学第三版 习题答案 第九章.doc

上传人:桔**** 文档编号:562049949 上传时间:2023-10-01 格式:DOC 页数:17 大小:113.01KB
返回 下载 相关 举报
生物化学第三版 习题答案 第九章.doc_第1页
第1页 / 共17页
生物化学第三版 习题答案 第九章.doc_第2页
第2页 / 共17页
生物化学第三版 习题答案 第九章.doc_第3页
第3页 / 共17页
生物化学第三版 习题答案 第九章.doc_第4页
第4页 / 共17页
生物化学第三版 习题答案 第九章.doc_第5页
第5页 / 共17页
点击查看更多>>
资源描述

《生物化学第三版 习题答案 第九章.doc》由会员分享,可在线阅读,更多相关《生物化学第三版 习题答案 第九章.doc(17页珍藏版)》请在金锄头文库上搜索。

1、第九章 脂代谢脂类的生理功能a. 生物膜的骨架成分 磷脂、糖脂b. 能量贮存形式 甘油三酯c. 参与信号识别、免疫 糖脂d. 激素、维生素的前体 固醇类激素,维生素D、A、K、Ee. 生物体表保温防护脂肪贮存量大,热值高,39KJ。70kg人体,贮存的脂肪可产生:2008320kJ 蛋白质 105000kJ 糖原 2520kJ Glc 168kJ脂肪的热值:1g脂肪产生的热量,是等量蛋白质或糖的2.3倍。第一节 脂类的消化、吸收和转运一、 脂类的消化和吸收1、 脂类的消化(主要在十二指肠中)食物中的脂类主要是甘油三酯 80-90%还有少量的磷脂 6-10% 胆固醇 2-3%胃的食物糜(酸性)进

2、入十二指肠,刺激肠促胰液肽的分泌,引起胰脏分泌HCO-3 至小肠(碱性)。脂肪间接刺激胆汁及胰液的分泌。胆汁酸盐使脂类乳化,分散成小微团,在胰腺分泌的脂类水解酶作用下水解。胰腺分泌的脂类水解酶: 三脂酰甘油脂肪酶(水解三酰甘油的C1、C3酯键,生成2-单酰甘油和两个游离的脂肪酸。胰脏分泌的脂肪酶原要在小肠中激活)磷脂酶A2(水解磷脂,产生溶血磷酸和脂肪酸)胆固醇脂酶(水解胆固醇脂,产生胆固醇和脂肪酸)辅脂酶(Colipase)(它和胆汁共同激活胰脏分泌的脂肪酶原)2、 脂类的吸收脂类的消化产物,甘油单脂、脂肪酸、胆固醇、溶血磷脂可与胆汁酸乳化成更小的混合微团(20nm),这种微团极性增大,易于

3、穿过肠粘膜细胞表面的水屏障,被肠粘膜的拄状表面细胞吸收。被吸收的脂类,在柱状细胞中重新合成甘油三酯,结合上蛋白质、磷酯、胆固醇,形成乳糜微粒(CM),经胞吐排至细胞外,再经淋巴系统进入血液。小分子脂肪酸水溶性较高,可不经过淋巴系统,直接进入门静脉血液中。二、 脂类转运和脂蛋白的作用甘油三脂和胆固醇脂在体内由脂蛋白转运。脂蛋白:是由疏水脂类为核心、围绕着极性脂类及载脂蛋白组成的复合体,是脂类物质的转运形式。载脂蛋白:(已发现18种,主要的有7种)在肝脏及小肠中合成,分泌至胞外,可使疏水脂类增溶,并且具有信号识别、调控及转移功能,能将脂类运至特定的靶细胞中。脂蛋白的分类及功能:P151表15-1各

4、种脂蛋白的组成、理化性质、生理功能三、 贮脂的动用皮下脂肪在脂肪酶作用下分解,产生脂肪酸,经血浆白蛋白运输至各组织细胞中。血浆白蛋白占血浆蛋白总量的50%,是脂肪酸运输蛋白,血浆白蛋白既可运输脂肪酸,又可解除脂肪酸对红细胞膜的破坏。贮脂的降解受激素调节。促进:肾上腺素、胰高血糖素、肾上腺皮质激素抑制:胰岛素植物种子发芽时,脂肪酶活性升高,能利用脂肪的微生物也能产生脂肪酶。第二节 脂肪酸和甘油三酯的分解代谢一、 甘油三酯的水解甘油三酯的水解由脂肪酶催化。组织中有三种脂肪酶,逐步将甘油三酯水解成甘油二酯、甘油单酯、甘油和脂肪酸。这三种酶是:脂肪酶(激素敏感性甘油三酯脂肪酶,是限速酶)甘油二酯脂肪酶

5、甘油单酯脂肪酶肾上腺素、胰高血糖素、肾上腺皮质激素都可以激活腺苷酸环化酶,使cAMP浓度升高,促使依赖cAMP的蛋白激酶活化,后者使无活性的脂肪酶磷酸化,转变成有活性的脂肪酶,加速脂解作用。胰岛素、前列腺素E1作用相反,可抗脂解。油料种子萌发早期,脂肪酶活性急剧增高,脂肪迅速水解。二、 甘油代谢在脂肪细胞中,没有甘油激酶,无法利用脂解产生的甘油。甘油进入血液,转运至肝脏后才能被甘油激酶磷酸化为3-磷酸甘油,再经磷酸甘油脱氢酶氧化成磷酸二羟丙酮,进入糖酵解途径或糖异生途径。P152 反应式:三、 脂肪酸的氧化(一) 饱和偶数碳脂肪酸的氧化1、 氧化学说早在1904年,Franz 和Knoop就提

6、出了脂肪酸氧化学说。用苯基标记含奇数碳原子的脂肪酸,饲喂动物,尿中是苯甲酸衍生物马尿酸。用苯基标记含隅数碳原子的脂肪酸,饲喂动物,尿中是苯乙酸衍生物苯乙尿酸。结论:脂肪酸的氧化是从羧基端-碳原子开始,每次分解出一个二碳片断。产生的终产物苯甲酸、苯乙酸对动物有毒害,在肝脏中分别与Gly反应,生成马尿酸和苯乙尿酸,排出体外。氧化发生在肝及其它细胞的线粒体内。2、 脂肪酸的氧化过程脂肪酸进入细胞后,首先被活化成酯酰CoA,然后再入线粒体内氧化。(1)、 脂肪酸的活化(细胞质)RCOO- + ATP + CoA-SH RCO-S-CoA + AMP + Ppi生成一个高能硫脂键,需消耗两个高能磷酸键,

7、反应平衡常数为1,由于PPi水解,反应不可逆。细胞中有两种活化脂肪酸的酶:内质网脂酰CoA合成酶,活化12C以上的长链脂肪酸线粒体脂酰CoA合成酶,活化410C的中、短链脂肪酸(2)、 脂肪酸向线粒体的转运中、短链脂肪酸(4-10C)可直接进入线粒体,并在线粒体内活化生成脂酰CoA。长链脂肪酸先在胞质中生成脂酰CoA,经肉碱转运至线粒体内。肉(毒)碱:L-羟基-r-三甲基铵基丁酸 P154.图15-1脂酰CoA以脂酰肉碱形式转运到线粒体内线粒体内膜外侧(胞质侧):肉碱脂酰转移酶催化,脂酰CoA将脂酰基转移给肉碱的羟基,生成脂酰肉碱。线粒体内膜:线粒体内膜的移位酶将脂酰肉碱移入线粒体内,并将肉碱

8、移出线粒体。线粒体内:膜内侧:肉碱脂酰转移酶催化,使脂酰基又转移给CoA,生成脂酰CoA和游离的肉碱。脂酰CoA进入线粒体后,在基质中进行氧化作用,包括4个循环的步骤。(3)、 脂酰CoA脱氢生成-反式烯脂酰CoAP154 反应式:线粒体基质中,已发现三种脂酰CoA脱氢酶,均以FAD为辅基,分别催化链长为C4-C6,C6-C14,C6-C18的脂酰CoA脱氢。(4)、 2反式烯脂酰CoA水化生成L-羟脂酰CoAP155 反应式:-烯脂酰CoA水化酶(5)、 L-羟脂酰CoA脱氢生成-酮脂酰CoAP155 反应式:L-羟脂酸CoA脱氢酶(6)、 -酮脂酰CoA硫解生成乙酰CoA和(n-2)脂酰C

9、oAP155 反应式:酮脂酰硫解酶3、 脂肪酸-氧化作用小结 结合P154图15-1和P156图15-2,回顾脂肪酸氧化过程。(1) 脂肪酸-氧化时仅需活化一次,其代价是消耗1个ATP的两个高能键(2) 长链脂肪酸由线粒体外的脂酰CoA合成酶活化,经肉碱运到线粒体内;中、短链脂肪酸直接进入线粒体,由线粒体内的脂酰CoA合成酶活化。(3) -氧化包括脱氢、水化、脱氢、硫解4个重复步骤(4) -氧化的产物是乙酰CoA,可以进入TCA4、 脂肪酸-氧化产生的能量以硬脂酸为例,18碳饱和脂肪酸胞质中: 活化:消耗2ATP,生成硬脂酰CoA线粒体内:脂酰CoA脱氢:FADH2 ,产生2ATP-羟脂酰Co

10、A脱氢:NADH,产生3ATP-酮脂酰CoA硫解:乙酰CoA TCA,12ATP (n-2)脂酰CoA 第二轮氧化活化消耗: -2ATP氧化产生: 8(2+3)ATP = 409个乙酰CoA: 912 ATP = 108净生成: 146ATP饱和脂酸完全氧化净生成ATP的数量:(8.5n-7)ATP (n 为偶数)硬脂酸燃烧热值:2651 kcal-氧化释放:146ATP(-7.3Kcal)=-1065.8Kcal转换热效率5、 -氧化的调节脂酰基进入线粒体的速度是限速步骤,长链脂酸生物合成的第一个前体丙二酸单酰CoA的浓度增加,可抑制肉碱脂酰转移酶,限制脂肪氧化。NADH/NAD+比率高时,

11、羟脂酰CoA脱氢酶便受抑制。乙酰CoA浓度高时;可抑制硫解酶,抑制氧化(脂酰CoA有两条去路: 氧化。合成甘油三酯)(二) 不饱和脂酸的氧化1、 单不饱和脂肪酸的氧化P157 油酸的氧化3顺2反烯脂酰CoA异构酶(改变双键位置和顺反构型)(146-2)ATP 2、 多不饱和脂酸的氧化P158 亚油酸的氧化3顺2反烯脂酰CoA异构酶(改变双键位置和顺反构型)-羟脂酰CoA差向酶(改变-羟基构型:DL型)(14622)ATP(三) 奇数碳脂肪酸的氧化奇数碳脂肪酸经反复的氧化,最后可得到丙酰CoA,丙酰CoA有两条代谢途径:1、 丙酰CoA转化成琥珀酰CoA,进入TCA。详细过程 P158动物体内存

12、在这条途径,因此,在动物肝脏中奇数碳脂肪酸最终能够异生为糖。反刍动物瘤胃中,糖异生作用十分旺盛,碳水化合物经细菌发酵可产生大量丙酸,进入宿主细胞,在硫激酶作用下产丙酰CoA,转化成琥珀酰CoA,参加糖异生作用。2、 丙酰CoA转化成乙酰CoA,进入TCAP159这条途径在植物、微生物中较普遍。有些植物、酵母和海洋生物,体内含有奇数碳脂肪酸,经氧化后,最后产生丙酰CoA。(四) 脂酸的其它氧化途径1、 氧化(不需活化,直接氧化游离脂酸)植物种子、叶子、动物的脑、肝细胞,每次氧化从脂酸羧基端失去一个C原子。RCH2COOHRCOOH+CO2氧化对于降解支链脂肪酸、奇数碳脂肪酸、过分长链脂肪酸(如脑

13、中C22、C24)有重要作用2、 氧化(端的甲基羟基化,氧化成醛,再氧化成酸)动物体内多数是12C以上的羧酸,它们进行氧化,但少数的12C以下的脂酸可通过氧化途径,产生二羧酸,如11C脂酸可产生11C、9C、和7C的二羧酸(在生物体内并不重要)。氧化涉及末端甲基的羟基化,生成一级醇,并继而氧化成醛,再转化成羧酸。氧化在脂肪烃的生物降解中有重要作用。泄漏的石油,可被细菌氧化,把烃转变成脂肪酸,然后经氧化降解。四、 酮体的代谢脂肪酸-氧化产生的乙酰CoA,在肌肉和肝外组织中直接进入TCA,然而在肝、肾脏细胞中还有另外一条去路:生成乙酰乙酸、D-羟丁酸、丙酮,这三种物质统称酮体。酮体在肝中生成后,再

14、运到肝外组织中利用。1、 酮体的生成酮体的合成发生在肝、肾细胞的线粒体内。形成酮体的目的是将肝中大量的乙酰CoA转移出去,乙酰乙酸占30%,羟丁酸70%,少量丙酮。(丙酮主要由肺呼出体外)肝脏线粒体中的乙酰CoA走哪一条途径,主要取决于草酰乙酸的可利用性。饥饿状态下,草酰乙酸离开TCA,用于异生合成Glc。当草酰乙酸浓度很低时,只有少量乙酰CoA进入TCA,大多数乙酰CoA用于合成酮体。当乙酰CoA不能再进入TCA时,肝脏合成酮体送至肝外组织利用,肝脏仍可继续氧化脂肪酸。酮体的生成途径:P164 图15-5酮体的生成过程肝中酮体生成的酶类很活泼,但没有能利用酮体的酶类。因此,肝脏线粒体合成的酮体,迅速透过线粒体并进入血液循环,送至全身。2、 酮体的利用肝外许多组织具有活性很强的利用酮体的酶。(1)、 乙酰乙酸被琥珀酰CoA转硫酶(-酮脂酰CoA转移酶)活化成乙酰乙酰CoA心、肾、脑、骨骼肌等的线粒体中有较高的酶活性,可活化乙酰乙酸。乙酰乙酸+琥珀酰CoA乙酰乙酰

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲 > 科普知识

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号