2023年初中数学重要知识点汇总

上传人:枫** 文档编号:561826803 上传时间:2022-12-18 格式:DOCX 页数:27 大小:23.82KB
返回 下载 相关 举报
2023年初中数学重要知识点汇总_第1页
第1页 / 共27页
2023年初中数学重要知识点汇总_第2页
第2页 / 共27页
2023年初中数学重要知识点汇总_第3页
第3页 / 共27页
2023年初中数学重要知识点汇总_第4页
第4页 / 共27页
2023年初中数学重要知识点汇总_第5页
第5页 / 共27页
点击查看更多>>
资源描述

《2023年初中数学重要知识点汇总》由会员分享,可在线阅读,更多相关《2023年初中数学重要知识点汇总(27页珍藏版)》请在金锄头文库上搜索。

1、2023年初中数学重要知识点汇总 数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。下面我为大家带来2023初中数学重要知识点汇总,希望大家喜欢! 初中数学重要知识点汇总 (一)数与代数 A、数与式: 1、有理数 有理数: 整数正整数/0/负整数 分数正分数/负分数 数轴: 画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。 任何一个有理数都可以用数轴上的一个点来表示。 如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反

2、数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。 数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。 绝对值: 在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。 正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。 有理数的运算: 加法: 同号相加,取相同的符号,把绝对值相加。 异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。 一个数与0相加不变。 减法:减去一个数,等于加上这个数的相反数。 乘法: 两数相乘,同号得正,异号得负

3、,绝对值相乘。 任何数与0相乘得0。 乘积为1的两个有理数互为倒数。 除法: 除以一个数等于乘以一个数的倒数。 0不能作除数。 乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。 混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。 2、实数 无理数:无限不循环小数叫无理数。 平方根: 如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。 如果一个数X的平方等于A,那么这个数X就叫做A的平方根。 一个正数有2个平方根/0的平方根为0/负数没有平方根。 求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。 立方根: 如果一个数X的立方等于A

4、,那么这个数X就叫做A的立方根。 正数的立方根是正数、0的立方根是0、负数的立方根是负数。 求一个数A的立方根的运算叫开立方,其中A叫做被开方数。 实数: 实数分有理数和无理数。 在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样。 每一个实数都可以在数轴上的一个点来表示。 3、代数式 代数式:单独一个数或者一个字母也是代数式。 合并同类项: 所含字母相同,并且相同字母的指数也相同的项,叫做同类项。 把同类项合并成一项就叫做合并同类项。 在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。 4、整式与分式 整式: 数与字母的乘积的代数式叫单项式

5、,几个单项式的和叫多项式,单项式和多项式统称整式。 一个单项式中,所有字母的指数和叫做这个单项式的次数。 一个多项式中,次数最高的项的次数叫做这个多项式的次数。 整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。 幂的运算:AM+AN=A(M+N) (AM)N=AMN (A/B)N=AN/BN除法一样。 整式的乘法: 单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。 单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。 多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。 公式

6、两条:平方差公式/完全平方公式 整式的除法: 单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。 多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。 分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。 方法:提公因式法、运用公式法、分组分解法、十字相乘法。 分式: 整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。 分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。 分式的运算: 乘法:把分子相乘的积作为积的分子,把分母相

7、乘的积作为积的分母。 除法:除以一个分式等于乘以这个分式的倒数。 加减法: 同分母的分式相加减,分母不变,把分子相加减。 异分母的分式先通分,化为同分母的分式,再加减。 分式方程: 分母中含有未知数的方程叫分式方程。 使方程的分母为0的解称为原方程的增根。 B、方程与不等式 1、方程与方程组 一元一次方程: 在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。 等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。 解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。 二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方

8、程叫做二元一次方程。 二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。 适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。 二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。 解二元一次方程组的方法:代入消元法/加减消元法。 一元二次方程:只有一个未知数,并且未知数的项的最高次数为2的方程 1)一元二次方程的二次函数的关系 已经学过二次函数(即抛物线)了,对它也有很深的了解,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y的0的时候就构成了一元二次方程了。那如果在平面直角坐标系中表示出来,一元二次方程就是二

9、次函数中,图象与X轴的交点。也就是该方程的解了。 2)一元二次方程的解法 二次函数有顶点式(-b/2a,(4ac-b2)/4a),这个顶点公式一定要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以它也有自己的一个解法,利用它可以求出所有的一元一次方程的解。 (1)配方法 利用配方,使方程变为完全平方公式,再用直接开平方法去求出解。 配方法的步骤: 先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式。 (2)分解因式法 提取公因式,套用公式法,和十字相乘法。在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积

10、的形式去解。 分解因式法的步骤: 把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式。 (3)公式法 这方法也可以是在解一元二次方程的万能方法了,方程的根X1=-b+b2-4ac)/2a,X2=-b-b2-4ac)/2a公式法。 就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c。 4)韦达定理 利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a 也可以表示为x1+x2=-b/a,x1x2=c/a。利用韦达定理,可以求出一元二次方程中的各系数,

11、在解题中很常用。 5)一元一次方程根的情况 利用根的判别式去了解,根的判别式可在书面上可以写为“”,读作“diao ta”,而=b2-4ac,这里可以分为3种情况: I当0时,一元二次方程有2个不相等的实数根; II当=0时,一元二次方程有2个相同的实数根; III当0时,一元二次方程没有实数根; 2、不等式与不等式组 不等式: 用符号,=,号连接的式子叫不等式。 不等式的两边都加上或减去同一个整式,不等号的方向不变。 不等式的两边都乘以或者除以一个正数,不等号方向不变。 不等式的两边都乘以或除以同一个负数,不等号方向相反。 不等式的解集: 能使不等式成立的未知数的值,叫做不等式的解。 一个含

12、有未知数的不等式的所有解,组成这个不等式的解集。 求不等式解集的过程叫做解不等式。 一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。 一元一次不等式组: 关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。 一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。 求不等式组解集的过程,叫做解不等式组。 一元一次不等式的符号方向: 在一元一次不等式中,不像等式那样,等号是不变的,他是随着你加或乘的运算改变。 在不等式中,如果加上同一个数(或加上一个正数),不等式符号不改向;例如:AB,A+CB+C 在

13、不等式中,如果减去同一个数(或加上一个负数),不等式符号不改向;例如:AB,A-CB-C 在不等式中,如果乘以同一个正数,不等号不改向;例如:AB,A_CB_C(C0)。 在不等式中,如果乘以同一个负数,不等号改向;例如:AB,A_Cb_c(c0)。 p= 如果不等式乘以0,那么不等号改为等号。 所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立。 3、函数 变量:因变量,自变量。 在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。 一次函数:若两个变量X,Y间的关系式可以表示成Y=KX+B(B为常数,K不等于0)的形式,则称Y是X的一次函数。当B=0时,称Y是X的正比例函数。 一次函数的图象: 把一个函数的自变量X与对应的因变量Y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 活动策划

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号