超精密加工技术.doc

上传人:枫** 文档编号:561826410 上传时间:2023-09-18 格式:DOC 页数:4 大小:31.51KB
返回 下载 相关 举报
超精密加工技术.doc_第1页
第1页 / 共4页
超精密加工技术.doc_第2页
第2页 / 共4页
超精密加工技术.doc_第3页
第3页 / 共4页
超精密加工技术.doc_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

《超精密加工技术.doc》由会员分享,可在线阅读,更多相关《超精密加工技术.doc(4页珍藏版)》请在金锄头文库上搜索。

1、精密和超精密加工论文机械09-1唐东东20090975超精密加工技术的发展状况一超精密加工技术1.1超精密加工技术的发展,直接影响到一个国家尖端技术和国防工业的发展,因此世界各国对此都极为重视,投入很大力量进行研究开发,同时实行技术保密,控制关键加工技术及设备出口。超精密加工技术,是现代机械制造业最主要的发展方向之一。在提高机电产品的性能、质量和发展高新技术中起着至关重要的作用,并且已成为在国际竞争中取得成功的关键技术. 超精密加工是指亚微米级(尺寸误差为0.30.03m,表面粗糙度为Ra0.030.005m)和纳米级(精度误差为0.03m,表面粗糙度小于 Ra0.005m)精度的加工。实现这

2、些加工所采取的工艺方法和技术措施,则称为超精加工技术。加之测量技术、环境保障和材料等问题,人们把这种技术总称为超精工程。 1.2超精密加工主要包括三个领域: (1)超精密切削加工如金刚石刀具的超精密切削,可加工各种镜面。它已成功地解决了用于激光核聚变系统和天体望远镜的大型抛物面镜的加工。 (2)超精密磨削和研磨加工如高密度硬磁盘的涂层表面加工和大规模集成电路基片的加工。 (3)超精密特种加工如大规模集成电路芯片上的图形是用电子束、离子束刻蚀的方法加工,线宽可达0.1m。如用扫描隧道电子显微镜(STM)加工,线宽可达25nm。 二. 工作原理近年来,在传统加工方法中,金刚石刀具超精密切削、金刚石

3、微粉砂轮超精密磨削、精密高速切削、精密砂带磨削等已占有重要地位;在非传统加工中,出现了电子束、离子束、激光束等高能加工、微波加工、超声加工、蚀刻、电火花和电化学加工等多种方法,特别是复合加工,如磁性研磨、磁流体抛光、电解研磨、超声珩磨等,在加工机理上均有所创新。 三. 设备3.1对精密和超精密加工所用的加工设备有下列要求。 (1)高精度。包括高的静精度和动精度,主要的性能指标有几何精度、定位精度和重复定位精度、分辨率等,如主轴回转精度、导轨运动精度、分度精度等; (2)高刚度。包括高的静刚度和动刚度,除本身刚度外,还应注意接触刚度,以及由工件、机床、刀具、夹具所组成的工艺系统刚度。 (3)高稳

4、定性。设备在经运输、存储以后,在规定的工作环境下使用,应能长时间保持精度、抗干扰、稳定工作。设备应有良好的耐磨性、抗振性等。 (4)高自动化。为了保证加工质量,减少人为因素影响,加工设备多采用数控系统实现自动化。 加工设备的质量与基础元部件,如主轴系统、导轨、直线运动单元和分度转台等密切相关,应注意这些元部件质量。此外,夹具、辅具等也要求有相应的高精度、高刚度和高稳定性。 3.2加工工具: 加工工具主要是指刀具、磨具及刃磨技术。用金刚石刀具超精密切削,值得研究的问题有:金刚石刀具的超精密刃磨,其刃口钝圆半径应达到24nm,同时应解决其检测方法,刃口钝圆半径与切削厚度关系密切,若切削的厚度欲达到

5、10nm,则刃口钝圆半径应为2nm。 3.3磨具的材料 磨具当前主要采用金刚石微粉砂轮超精密磨削,这种砂轮有磨料粒度、粘接剂、修整等问题,通常,采用粒度为W20W0.5的微粉金刚石,粘接剂采用树脂、铜、纤维铸铁等。四. .超精密制造技术的应用领域和发展状况4.1超精密制造技术的应用领域 超精密制造技术是随着测量技术的发展而发展的。Renishaw、Heidenhain及SONY等公司发展了分辨率均可以达到1nm的测量元件;美国HP公司、英国Taylor、美国zygo等公司的测量仪器均可以满足纳米测量的需求。超精密制造技术在国际上已经得到广泛应用。与国防工业有关的如人造卫星用的姿态轴承和遥测部件

6、、被送入太空的哈勃望远镜(HST)、飞机发动机转子叶片等;与集成电路(IC)有关的硅片加工(要求硅片的加工表面粗糙度Ra一般小于2nm,最高要求达01nm);此外光刻设备和硅片加工设备的精度要求到亚微米和纳米级。导弹惯性仪表的精度、激光陀螺仪的平面反射镜的精度、红外制导的导弹反射镜等,其表面粗糙度均要求达到纳米级。另外,光学非球曲面零件面形制造精度要求已达 /(3050),表面粗糙度要求05nm。4.2超精密制造技术的发展状况 1962年美国Union Carbide公司研制出首台超精密车床。在美国能源部支持下,LLI实验室和Y12工厂合作,与1983年成功地研制出大型超精密金刚石车床(DTM

7、3型)。该机床可加工最大直径2100mm,多路激光干涉测量系统分辨率为25nm。1984年,LLL实验室成功地研制出LODTM大型金刚石车床。该机床可加工的最大直径为1625mm x 500mm,重量1360kg。采用的双频激光测量系统分辨率为07nm,其主轴静态精度为:径向跳动25nm,轴向窜动51nm。LLL实验室这两台机床是目前公认的国际上水平最高的超精密机床。 进入90年代以后,超精密铣磨和抛光技术在几个发达国家竞相发展,个别实验室可以达到很高的水平,特别是其中包含的纳米制造技术,受到很大的关注。开发超精密铣磨和纳米抛光制造技术较好的公司及机构有:美国M00RE公司、英国的TAYL0R

8、、德国的ZEISS、LOH、SCHNEIDER、日本的NACHI、TOSHIBA、荷兰的PHILIP等。 国内有许多单位在从事研究和生产超精密加工设备和仪器,如:北京机床研究所、清华大学、长沙国防科技大学、哈尔滨工业大学、西安交通大学、303所等单位。 北京机床研究所生产的超精密机床特点是:主轴性能好,精度可以达到20-50nm,刚度可以达到350N/m;溜板直线性01m/200mm;加工件表面粗糙度值小,车铣表面最好可以小于1nm;运动系统分辨率高,可以达到纳米级;商品化程度高。机床类型包括:JCS027超精密车床、NAM800超精密车床、SQUARE300超精密铣床和SPHERE 200超

9、精密球面加工机床等。 哈尔滨工业大学研制的超精密机床型号为HCM,主轴精度50nm,径向刚度220N/m,轴向刚度160N/m,导轨Z向(主轴)直线度02m/100 mm,X向(刀架)直线度02m/100mm,X、Z向垂直度1,加工工件精度形面精度(圆度)01m。五. 结论超精密加工,是现代机械制造业最主要的发展方向之一,在提高机电产品的性能、质量和发展高新技术中起着至关重要的作用,并且已成为在国际竞争中取得成功的关键技术。我国的制造业发展已进入了高速发展阶段,中国民营企业已具备足够的经济实力来使企业迈向现代化,先进设备的引进和大量专业人才的涌入使许多沿海地区的制造业水平迅速提高。随着国家决策的科学化、民主化进程不断深入,相信我国的制造业会更快速、更健康地发展.

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 生活休闲 > 社会民生

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号