半导体物理与器件基础知识

上传人:大米 文档编号:561642544 上传时间:2023-05-12 格式:DOCX 页数:6 大小:13.70KB
返回 下载 相关 举报
半导体物理与器件基础知识_第1页
第1页 / 共6页
半导体物理与器件基础知识_第2页
第2页 / 共6页
半导体物理与器件基础知识_第3页
第3页 / 共6页
半导体物理与器件基础知识_第4页
第4页 / 共6页
半导体物理与器件基础知识_第5页
第5页 / 共6页
点击查看更多>>
资源描述

《半导体物理与器件基础知识》由会员分享,可在线阅读,更多相关《半导体物理与器件基础知识(6页珍藏版)》请在金锄头文库上搜索。

1、9 金属半导体与半导体异质结肖特基势垒二极管欧姆接触:通过金属 -半导体的接触实现的连接。接触电阻很低。金属与半导体接触时,在未接触时, 半导体的费米能级高于金属的费米能级,接触后, 半导体的电子流向金属,使得金属的费米能级上升。之间形成势垒为肖特基势垒。在金属与半导体接触处,场强达到最大值,由于金属中场强为零,所以在金属半 导体结的金属区中存在表面负电荷。影响肖特基势垒高度的非理想因素:肖特基效应的影响,即势垒的镜像力降低效应。 金属中的电子镜像到半导体中的空穴使得半导体的费米能级程下降曲线。 附图:电流电压关系:金属半导体结中的电流运输机制不同于 pn 结的少数载流子的扩 散运动决定电流,

2、而是取决于多数载流子通过热电子发射跃迁过内建电势差形成。附肖特 基势垒二极管加反偏电压时的 I-V 曲线: 反向电流随反偏电压增大而增大是由于势垒降 低的影响。肖特基势垒二极管与 Pn 结二极管的比较: 1.反向饱和电流密度(同上) ,有效开启电 压低于 Pn 结二极管的有效开启电压。 2.开关特性肖特基二极管更好。 应为肖特基二极管是 一个多子导电器件,加正向偏压时不会产生扩散电容。从正偏到反偏时也不存在像 Pn 结 器件的少数载流子存储效应。二 金属-半导体的欧姆接触附金属分别与 N 型 p 型半导体接触的能带示意图三、异质结:两种不同的半导体形成一个结小结: 1.当在金属与半导体之间加一

3、个正向电压时,半导体与金属之间的势垒高度降 低,电子很容易从半导体流向金属,称为热电子发射。2.肖特基二极管的反向饱和电流比 pn 结的大,因此达到相同电流时,肖特基二极管所 需的反偏电压要低。10 双极型晶体管双极型晶体管有三个掺杂不同的扩散区和两个 Pn 结,两个结很近所以之间可以互相 作用。之所以成为双极型晶体管,是应为这种器件中包含电子和空穴两种极性不同的载流 子运动。一、工作原理附 npn 型和 pnp 型的结构图发射区掺杂浓度最高,集电区掺杂浓度最低附常规 npn 截面图造成实际结构复杂的原因是: 1.各端点引线要做在表面上,为了降低半导体的电阻, 必须要有重掺杂的N+型掩埋层。2

4、.片半导体材料上要做很多的双极型晶体管,各自必须 隔离,应为不是所有的集电极都是同一个电位。通常情况下,BE结是正偏的,BC结是反偏的。称为正向有源。附图:由于发射结正偏,电子就从发射区越过发射结注入到基区。BC结反偏,所以在BC结 边界,理想情况下少子电子浓度为零。附基区中电子浓度示意图 :电子浓度梯度表明,从发射区注入的电子会越过基区扩散到 BC 结的空间电荷区,那 里的电场会将电子扫到集电区。我们希望更多的电子能够进入集电区而不是在基区和多子 空穴复合。因此和少子扩散长度相比,基区宽度必须很小。工作模式: 附共发射极电路中 npn 型双极型晶体管示意图1. 如果 B E 电压为零或者小于

5、零(反偏) ,那么发射区中的多子电子就不会注入到 基区。由于 B C 也是反偏的,这种情况下,发射机电流和集电极电流是零。称为截至 状态。2. 随着 B E 结电压增大,集电极电流会增大,从而集电极上电阻分压 Vr 增大,意 味着在晶体管 CB 上分压绝对值减小;在某点出,集电极电流会增大到组后大使得电阻 分压后再 BC 结零偏。过了这点后,集电极电流微笑增加会导致 Vr 微小增加,从而使 BC结变为正偏(Vcb0 )。称为饱和。饱和时,B E结和BC结都是正偏的,集电极电流不受 B E 结电压。附双极型晶体管共发射极的电流电压特性,添加了负载线:Ic=0 时晶体管处于截至区。当基极电流变化时

6、,集电极电流没有变化,处于饱和区。 当Ic=pib成立时,晶体管处于正向有源区。小结:1. 基区宽度调制效应(厄尔利效应):中性基区宽度随 B C 结电压变化而发生变化, 于是集电极电流随BC结或C E结电压变化而变化。2. 大注入效应使得集电极电流随 C E 结电压增加而低速率增加。11 金属-氧化物-半导体场效应晶体管基础MOSFET的核心是MOS电容。在半导体中,由于施加了一个穿过MOS电容的电压, 氧化物-半导体界面的能带将发生弯曲。 其费米能级是该电压的函数, 因此通过适当的电压 可以使得半导体表面的特性从 p 型转换为 N 型,或 n 型转换为 p 型。附基本 mos 电容结构平带

7、电压:使半导体内部没有能带弯曲所加的栅压。阈值电压:达到阈值反型点所需要的栅压。阈值反型点:表面势0s为两倍的0f(费 米能级与本征费米能级之差 )的状态 .当小于阈值电压时,未强反型,沟道未形成,截至; 大于等于阈值电压时,强反型,沟道形成,导通。阈值电压大于零,为增强型,零栅压时未反型。阈值电压小于零,为耗尽型,零栅压 时已反型。对于p型衬底的Mos,能使反型层电荷密度改变的来源有:1来自空间电荷区P型衬底 的少子电子的扩散; 2.热运动产生的电子空穴对。界面态:半导体在界面处的周期突然停止,使得电子能级存在于禁带中,这些允许的 能太称为界面态。三倉MOSFET的基本工作原理附 N 沟增强

8、型 MOSFET 和耗尽型的剖面图: (注意电路符号)附I(D)-V(GS)曲线的原理图附 n 沟增强型 MOSFET 的特性曲线当V(DS )大于阈值电压时,沟道中反型电荷为零的点移向愿端。此时电子从源端进入 沟道,通过沟道流向漏端。在电荷为零的点处,电子被注入空间电荷区,并被电场扫向漏 端。附 n 沟耗尽型 MOSFET 的特性曲线亚阈值电导是指在 MOSFET 中当栅源电压小于阈值电压时漏电流不为零。这种情况 下,晶体管被偏置在弱反型模式下,漏电流是由扩散机制而非漂移机制控制。该电导会在 集成电路中产生一个明显的静态偏置电流。13 结型场效应晶体管PnJEFT 的基本工作原理以 N 沟为例,多数载流子电子 自源极流向漏极,器件的栅极是控制端。附改变栅源电压的电流电压特性曲线Pn现在分析栅电压为零,漏电压变化的情况。随着漏源电压的增大,栅与沟道形成的 结反偏,空间电荷区向沟道扩展。随着空间电荷区的扩展,有效沟道电阻增大,曲线斜率 变小。附改变漏源电压时的特性曲线。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 学术论文 > 其它学术论文

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号