《2124根与系数关系.doc》由会员分享,可在线阅读,更多相关《2124根与系数关系.doc(3页珍藏版)》请在金锄头文库上搜索。
1、 繁昌县田家炳中学电子备课模板3课题: 年级: 九年级 学期: 第 二学期 备课人: 孙庆刚内容分析教学目标知识与技能:1.熟练掌握一元二次方程的根与系数关系.2.灵活运用一元二次方程的根与系数关系解决实际问题.3.提高学生综合运用基础知识分析解决较复杂问题的能力. 过程与方法:学生经历探索,尝试发现韦达定理,感受不完全归纳验证以及演绎证明情感、态度与价值观:培养学生观察,分析和综合,判断的能力,激发学生发现规律的积极性,激励学生勇于探索的精神.教学重点一元二次方程的根与系数关系教学难点对根与系数关系的理解和推导教学方法采用启发诱导,实例探究,讲练结合,小组合作等方法。教学准备电子白板教学过程
2、设计教学过程教学过程个性化思路与设计一、情景导入导语:一元二次方程的根与系数有着密切的关系,早在16世纪法国的杰出数学家韦达发现了这一关系,你能发现吗?二、新知探究1.课本思考分析:将(x- x1)(x-x2)=0化为一般形式x2-( x1 +x2)x+ x1 x2=0与x2+px+ q=0对比,易知p=-( x1 +x2), q= x1 x2. 即二次项系数是1的一元二次方程如果有实数根,则一次项系数等于两根和的相反数,常数项等于两根之积.2.跟踪练习求下列方程的两根x1 、x2. 的和与积.x2+3x+2=0; x2+2x-3=0; x2-6x+5=0; x2-6x-15=03. 方程2x
3、2-3x+1=0的两根的和、积与系数之间有类似的关系吗?分析:这个方程的二次项系数等于2,与上面情形有所不同,求出方程两根,再通过计算两根的和、积,检验上面的结论是否成立,若不成立,新的结论是什么?4.一般的一元二次方程ax2+bx+c=0(a0)中的a不一定是1,它的两根的和、积与系数之间有第3题中的关系吗?分析:利用求根公式,求出方程两根,再通过计算两根的和、积,得到方程的两个根x1 、x2和系数a,b,c的关系,即韦达定理,也就是任何一个一元二次方程的根与系数的关系为:两根的和等于一次项系数与二次项系数的比的相反数,两根之积等于常数项与二次项系数的比. 求根公式是在一般形式下推导得到,根
4、与系数的关系由求根公式得到,因此,任何一个一元二次方程化为一般形式后根与系数之间都有这一关系.5.跟踪练习求下列方程的两根x1 、x2. 的和与积.3x2+7x+2=0;3x2+7x-2=0; 3x2-7x+2=0;3x2-7x-2=0;5x-1=4x2;5x2-1=4x2+x6.拓展练习已知一元二次方程2x2+bx+c=0的两个根是-1,3,则b= ,c= .已知关于x的方程x2+kx-2=0的一个根是1,则另一个根是 ,k的值是 .若关于x的一元二次方程x2+px+q=0的两个根互为相反数,则p= ; 若两个根互为倒数,则q= .分析:方程中含有一个字母系数时利用方程一根的值可求得另一根和
5、这个字母系数;方程中含有两个字母系数时利用方程的两根的值可求得这两个字母系数.二次项系数是1时,若方程的两根互为相反数或互为倒数,利用根与系数的关系可求得方程的一次项系数和常数项.两个根均为负数的一元二次方程是( ) A.4x2+21x+5=0 B.6x2-13x-5=0 C.7x2-12x+5=0 D.2x2+15x-8=0.两根异号,且正根的绝对值较大的方程是( )A.4x2-3=0 B.-3x2+5x-4=0 C.0.5x2-4x-3=0 D.2x2+x-=0.若关于x的一元二次方程2x2-3x+m=0,当m 时方程有两个正根;当m 时方程有两个负根;当m 时方程有一个正根一个负根,且正
6、根的绝对值较大.分析:根据方程的根的正负情况,结合根与系数关系,确定方程各项系数的符号,中还需考虑m的值还得受根的判别式的限制.三、课堂训练1.完成课本练习2.补充练习:x1 ,x2是方程3x2-2x-4=0的两根,利用根与系数的关系求下列各式的值:; ; ;三、课堂小结1. 韦达定理二次项系数不是1的方程根与系数的关系2. 运用韦达定理时,注意隐含条件:二次项系数不为0,0;3.韦达定理的应用常见题型:不解方程,判断两个数是否是某一个一元二次方程的两根;已知方程和方程的一根,求另一个根和字母系数的值;由给出的两根满足的条件,确定字母系数的值;判断两个根的符号;不解方程求含有方程的两根的式子的值.(给出个性化设计思路,将共享资源改造在有个人特色的教学设计,而不仅仅是复制粘贴这种简单的工作。)本课作业必做:P17:7选做:补充作业:已知一元二次方程x2+3x+1=0的两个根是,求的值.板书设计3