第18讲函数与方程.doc

上传人:ni****g 文档编号:561395671 上传时间:2023-12-05 格式:DOC 页数:7 大小:746.01KB
返回 下载 相关 举报
第18讲函数与方程.doc_第1页
第1页 / 共7页
第18讲函数与方程.doc_第2页
第2页 / 共7页
第18讲函数与方程.doc_第3页
第3页 / 共7页
第18讲函数与方程.doc_第4页
第4页 / 共7页
第18讲函数与方程.doc_第5页
第5页 / 共7页
点击查看更多>>
资源描述

《第18讲函数与方程.doc》由会员分享,可在线阅读,更多相关《第18讲函数与方程.doc(7页珍藏版)》请在金锄头文库上搜索。

1、第18讲 函数与方程一、要点精讲1方程的根与函数的零点(1)函数零点:概念:对于函数,把使成立的实数叫做函数的零点。函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:方程有实数根函数的图象与轴有交点函数有零点。二次函数的零点:),方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点;),方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点;),方程无实根,二次函数的图象与轴无交点,二次函数无零点。零点存在性定理:如果函数在区间上的图象是连续不断的一条曲线,并且有,那么函数在区间内有零点。既存在,使得,这个也就是方程

2、的根。2.二分法二分法及步骤:对于在区间,上连续不断,且满足的函数,通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法给定精度,用二分法求函数的零点近似值的步骤如下:(1)确定区间,验证,给定精度;(2)求区间,的中点;(3)计算:若=,则就是函数的零点;若,则令=(此时零点);若0,f(x)在区间p,q上的最大值M,最小值m,令x0= (p+q)。若p,则f(p)=m,f(q)=M;若px0,则f()=m,f(q)=M;若x0q,则f(p)=M,f()=m;若q,则f(p)=M,f(q)=m。(3)二次方程f(x)=ax2+bx+c=0

3、的实根分布及条件。方程f(x)=0的两根中一根比r大,另一根比r小af(r)0;二次方程f(x)=0的两根都大于r 二次方程f(x)=0在区间(p,q)内有两根二次方程f(x)=0在区间(p,q)内只有一根f(p)f(q)0,或f(p)=0(检验)或f(q)=0(检验)检验另一根若在(p,q)内成立。二、典例解析题型1:方程的根与函数零点例1(1)方程lgx+x=3的解所在区间为( )A(0,1) B(1,2) C(2,3) D(3,+)(2)设a为常数,试讨论方程的实根的个数。解析:(1)在同一平面直角坐标系中,画出函数y=lgx与y=-x+3的图象(如图)。它们的交点横坐标,显然在区间(1

4、,3)内,由此可排除A,D至于选B还是选C,由于画图精确性的限制,单凭直观就比较困难了。实际上这是要比较与2的大小。当x=2时,lgx=lg2,3-x=1。由于lg21,因此2,从而判定(2,3),故本题应选C。(2)原方程等价于即构造函数和,作出它们的图像,易知平行于x轴的直线与抛物线的交点情况可得:当或时,原方程有一解;当时,原方程有两解;当或时,原方程无解。题型2:零点存在性定理例2若函数在区间a,b上的图象为连续不断的一条曲线,则下列说法正确的是( )A若,不存在实数使得;B若,存在且只存在一个实数使得;C若,有可能存在实数使得; D若,有可能不存在实数使得;解析:由零点存在性定理可知

5、选项D不正确;对于选项B,可通过反例“在区间上满足,但其存在三个解”推翻;同时选项A可通过反例“在区间上满足,但其存在两个解”;选项C正确,见实例“在区间上满足,但其存在实数解”。题型3:二分法的概念例3关于“二分法”求方程的近似解,说法正确的是()A“二分法”求方程的近似解一定可将在a,b内的所有零点得到;B“二分法”求方程的近似解有可能得不到在a,b内的零点;C应用“二分法”求方程的近似解,在a,b内有可能无零点;D“二分法”求方程的近似解可能得到在a,b内的精确解;解析:如果函数在某区间满足二分法题设,且在区间内存在两个及以上的实根,二分法只可能求出其中的一个,只要限定了近似解的范围就可

6、以得到函数的近似解,二分法的实施满足零点存在性定理,在区间内一定存在零点,甚至有可能得到函数的精确零点。例4方程在0,1内的近似解,用“二分法”计算到达到精确度要求。那么所取误差限是( )A0.05 B0.005 C0.0005 D0.00005解析:由四舍五入的原则知道,当时,精度达到。此时差限是0.0005,选项为C。题型4:一元二次方程的根与一元二次函数的零点例5设二次函数,方程的两个根满足. 当时,证明。证明:由题意可知,, , 当时,。又, ,综上可知,所给问题获证。例6已知二次函数,设方程的两个实数根为和. (1)如果,设函数的对称轴为,求证:;(2)如果,求的取值范围.解析:设,

7、则的二根为和。(1)由及,可得 ,即,即两式相加得,所以,;(2)由, 可得 。又,所以同号。 ,等价于或,即 或解之得 或。题型5:一元二次函数与一元二次不等式例7设,若,, 试证明:对于任意,有。解析: , , . 当时,当时,综上,问题获证。例8已知二次函数,当时,有,求证:当时,有解析:由题意知:, , 。由时,有,可得 。 ,。(1)若,则在上单调,故当时, 此时问题获证. (2)若,则当时,又, 此时问题获证。综上可知:当时,有。点评:研究的性质,最好能够得出其解析式,从这个意义上说,应该尽量用已知条件来表达参数. 确定三个参数,只需三个独立条件,本题可以考虑,这样做的好处有两个:

8、一是的表达较为简洁,二是由于正好是所给条件的区间端点和中点,这样做能够较好地利用条件来达到控制二次函数范围的目的。要考虑在区间上函数值的取值范围,只需考虑其最大值,也即考虑在区间端点和顶点处的函数值。题型6:二次函数的图像与性质例9在下列图象中,二次函数y=ax2+bx与指数函数y=()x的图象只可能是( )解析一:由指数函数图象可以看出01.抛物线方程是y=a(x+)2,其顶点坐标为(,),又由01,可得0.观察选择支,可选A。解析二:求y=ax2+bx与x轴的交点,令ax2+bx=0,解得x=0或x=,而10.故选A。例10设aR,函数f(x)=x2+|xa|+1,xR. (1)讨论f(x

9、)的奇偶性;(2)求f(x)的最小值.解:(1)显然a=0时,f(x)为偶函数,当a0时,f(a)=a2+1, f(a)=a2+2|a|+1f(a)f(a), f(a)+f(a)0, 此时f(x)为非奇非偶函数.(2)首先应先去掉绝对值,再进行讨论.当xa时,.若,则f(x)在区间(-,a上单调递减, f(x)的最小值为f(a)=a2+1.(如图(I)若,则f(x)在区间(-,a上的最小值为(如图II). 当xa时,若,则f(x)在a,+上的最小值为(如图III)。若,则f(x)在a,+上单调递增。则f(x)在a,+上的最小值为f(a)=a2+1.(如图IV)。综上,当时,f(x)最小值为。当

10、时,f(x)最小值为a2+1。当时,f(x)最小值为。题型7:二次函数的综合问题例11已知函数和的图象关于原点对称,且。()求函数的解析式; ()解不等式; ()若在上是增函数,求实数的取值范围。解析:()设函数的图象上任意一点关于原点的对称点为,则点在函数的图象上,()由当时,此时不等式无解。当时,解得。因此,原不等式的解集为。()例12已知函数。(1)将的图象向右平移两个单位,得到函数,求函数的解析式;(2)函数与函数的图象关于直线对称,求函数的解析式;(3)设,已知的最小值是且,求实数的取值范围。解析:(1)(2)设的图像上一点,点关于的对称点为,由点Q在的图像上,所以,于是即(3)。设,则。问题转化为:对恒成立. 即 对恒成立. (*)故必有.(否则,若,则关于的二次函数开口向下,当充分大时,必有;而当时,显然不能保证(*)成立.),此时,由于二次函数的对称轴,所以,问题等价于,即,解之得:。此时,故在取得最小值满足条件。

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 生活休闲 > 社会民生

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号