《重难点诊断方法.docx》由会员分享,可在线阅读,更多相关《重难点诊断方法.docx(3页珍藏版)》请在金锄头文库上搜索。
1、转:教学中如何突破重点解决难点每节课我们都要围绕一个知识点进行教学,并进行有效的挖掘与延伸,针对学生的实际情况,对知识中难以理解接受的知识进行有效的突破。衡量数学教学是否有效的基本标准之一,就是看教师在教学中能否突出重点,根据学生实际,突破难点。本文提出了确定教学重点和难点应注意的几个要点,并尝试找出突出重点、突破难点的实践策略。我以苏教版小学数学教材中“解决问题的策略”为例,就教学中如何突出重点、突破难点谈一些体悟一、确定教学重点和难点应注意的几个要点1根据教材的知识结构,从知识点中梳理出重点理解知识点,首先是要理解这部分内容整体的知识结构和内容间的逻辑关系,再把相应的教学内容放到知识的结构
2、链中去理解。其次是理解整个单元的知识点,特别是要详细地知道每节课的知识点,在教学中做到不遗漏、不添加。如果知识点是某单元或某内容的核心,是后继学习的基石或有广泛应用等,那么它就是教学重点。教学重点一般由教材决定,对每个学生是一致的。一节课的知识点可能有多个,但重点一般只有一两个。以六年级上册“解决问题的策略替换”为例,本课的知识点有:(1)掌握解决问题的一般步骤,能按步骤解决问题;(2)会用“替换”的策略理解题意、分析数量关系;(3)学会检验,掌握检验的方法;(4)明白替换问题的特点:在和一定的数量关系下,将一种数量替换成另一种数量;(5)理解用“替换”策略解决倍数关系和相差关系问题的同和异;
3、(6)感受“替换”策略解决特定问题的价值。梳理这些知识点后,本课的教学重点有两个:一是让学生学会用“替换”的策略理解题意、分析数量关系,二是让学生明白替换问题的特点:在和一定的数量关系下,将一种数量替换成另一种数量。2根据学生的认知水平,从重点中确定好难点。数学教学重点和难点与学生的认知结构有关,是由于学生原有数学认知结构与学习新内容之间的矛盾而产生的。把新知识纳入原有的数学认知结构,从而扩大原有数学认知结构的过程是同化。当新知识不能同化于原有的数学认知结构,要改造数学认知结构,使新知识能适应这种结构的过程是顺应。从学生的认知水平来分析,通过同化掌握的知识点是教学重点,通过顺应掌握的知识点既是
4、教学重点,又是教学难点。当然,在实际教学中,由于学生个体认知水平的差异,同化的知识对有的学生而言,也是学习难点,顺应的知识对有的学生而言,不一定是学习难点。总之,要根据学生实际,在把握重点的基础上,确定好难点。仍以六年级上册“解决问题的策略替换”为例,“替换”是一种应用于特定问题情境下的解题策略,从学生的认知结构上看,掌握这一解题策略的过程是顺应的过程。因此,这节课的教学重点就是教学难点,即会用“替换”的策略理解题意、分析数量关系。除此以外,这节课的另一个教学难点是在用“替换”的策略解决相差关系的问题时,要找准总数与份数的对应数量,理解总数的变化。3把握教材与学生的实际,区分教学重点和难点。分
5、析教材,我们认为教学重点指的是“在整个知识体系中处于重要地位或发挥突出作用的内容”。因此,教学重点是基于数学知识的内在逻辑结构而客观存在的。分析学生的认知结构,我们知道教材上的重要知识点是要学生通过同化或顺应去实现的,在同化或顺应的过程中出现教学难点。由于难点与重点形成的依据不同,所以有的内容是重点又是难点,有的内容是重点但不一定形成难点,还有的内容是难点但不一定是重点。教学中,还需要教师在分析教材和学生的基础上,区分好教学重点和难点。以六年级上册“解决问题的策略假设”为例,教学重点和难点都是通过画图和列表的方法,学会用假设策略分析数量关系,确定解题思路,解决问题。教学实践中。我们发现列表假设
6、的方法蕴含了变元思想,比画图假设的方法更抽象,学生难以理解。因此可直接给出表格,让学生看懂表格后,再填表解决问题。最后通过比较,找出两种方法的共同点,从本质上理解假设策略二、突出重点、突破难点的几条主要策略1把握好重点和难点是突出重点、突破难点的前提。通过上文的分析,我们可以得出这样的结论:要想在教学中做到突出重点、突破难点,首先是深钻教材,从知识结构上,抓住各章节和每节课的重点和难点。其次是备足学生,根据学生实际的认知水平,并考虑到不同学生认知结构的差异,把握好教学重点和难点。课前的精心准备、准确定位,就为教学时突出重点和突破难点提供了有利条件。2找准知识的生长点是突出重点、突破难点的条件。
7、小学数学是系统性很强的学科。数学教学就是要借助于数学的逻辑结构,引导学生由旧人新,组织积极的迁移,促成由已知到未知的推理,认识简单与复杂问题的联系,不断完善认知结构。因此,新知识的形成都有其固定的知识生长点,找准知识的生长点,才能突出重点、突破难点。我们可依据以下3点找准知识生长点:(1)有的新知识与某些旧知识属同类或相似,要突出“共同点”,进而突破重、难点;(2)有的新知识由两个或两个以上旧知识组合而成,要突出“连接点”,进而突破重、难点;(3)有的新知识由某旧知识发展而来的,要突出“演变点”,进而突破重、难点。如教学“解决问题的策略”,虽然每个策略都有其适用的题目,但是在形成新策略的过程中
8、要综合应用已有的策略,如学习替换与假设策略时要用到画图、列表等策略,且综合法与分析法贯穿始终。所以这一单元的教学,是数学认知结构改造的过程,要突出“演变点”,进而突破重、难点。3采用合适的教学方式是突出重点、突破难点的关键。全日制义务教育数学课程标准(修改稿)指出:教师的教学应该以学生的认知发展水平和已有的经验为基础,面向全体学生,注重启发式和因材施教。教师要发挥主导作用,处理好讲授与自主学习的关系,通过有效的措施,引导学生独立思考、主动探索、合作交流,使学生理解和掌握基本的数学知识与技能、数学思想和方法,得到必要的数学思维训练,获得基本的数学活动经验。认真阅读这段话,可以知道:根据学生实际,
9、采用合适的教学方式是突出重点、突破难点的关键。如教学“解决问题的策略”时,合适的教学方式是独立思考尝试解题合作交流比较归纳反思小结形成体验。这样的教学方式,能使学生在经历问题解决的过程中,感悟解题策略,形成解题策略,体会策略价值,自觉应用策略解决问题,真正做到突出重点和突破难点。4积累基本的数学经验是突出重点、突破难点的基础。基本数学经验是指在数学目标的指引下,通过对具体事物进行实际操作、考察和思考,从感性向理性飞跃时所形成的认识。数学经验源于日常生活经验,高于日常经验。小学数学活动可分为4类:直接来源于生活的数学活动;间接来源干生活的数学活动;为数学学习设计的纯粹数学活动;意境连接性的数学活
10、动。“解决问题的策略”教学属于间接来源于生活的数学活动,因此教师要设计有层次的数学学习活动,引导学生经历解题过程,进行体验和反思,把解决问题中的体验加以整理,对获得的数学经验进行反思,对学生的认知过程再认知,从而掌握解题策略,感受策略价值,积累数学经验,有效突破教学重、难点。以五年级上册“解决问题的策略列举”为例,教学例1要让学生经历无序到有序的过程,学会用列表的方法有条理地列举;教学例2要引导学生用列举的策略解决问题,要不重复、不遗漏地进行思考,感受用列表、打“?”法列举的简洁、有序;教学例3要启发学生从不同的角度分析问题,进一步感受列举策略的特点。教学每道例题,都要引导学生回顾和反思,积累数学经验,树立主动用策略解决问题的意识。5信息技术的合理应用是突出重点、突破难点的保障:现代信息技术的发展对数学教育的价值、目标、内容以及学与教的方式产生了重大的影响。现代信息技术已经成为学生学习数学和解决问题的强有力工具。因此,在突出教学重点和突破教学难点的过程中,要充分发挥现代信息技术的优势,化动为静,化隐为显,化难为易,化抽象为直观,并通过与传统技术的联合与互补,有效促进教学重难点的突破。如:教学六年级上册“解决问题的策略替换、假设”时,利用信息技术,通过画图直观演示用替换和假设法解决问题的过程,使学生会用这两种策略分析数量关系,保证了重难点的顺利突破。