样品检测原理.doc

上传人:hs****ma 文档编号:561355723 上传时间:2024-03-31 格式:DOC 页数:23 大小:1.66MB
返回 下载 相关 举报
样品检测原理.doc_第1页
第1页 / 共23页
样品检测原理.doc_第2页
第2页 / 共23页
样品检测原理.doc_第3页
第3页 / 共23页
样品检测原理.doc_第4页
第4页 / 共23页
样品检测原理.doc_第5页
第5页 / 共23页
点击查看更多>>
资源描述

《样品检测原理.doc》由会员分享,可在线阅读,更多相关《样品检测原理.doc(23页珍藏版)》请在金锄头文库上搜索。

1、目录1. BAMAN2. PL3. XRD4. AFM5. XPS6. TEM7. SEM(一)拉曼光谱学1.1928 年,印度科学家C.V Raman in首先在CCL4光谱中发现了当光与分子相互作用后,一部分光的波长会发生改变(颜色发生变化),通过对于这些颜色发生变化的散射光的研究,可以得到分子结构的信息,因此这种效应命名为Raman效应。2.光散射的过程:激光入射到样品,产生散射光。工作原理当一束频率为v0的单色光照射到样品上后,分子可以使入射光发生散射。大部分光只是改变光的传播方向,从而发生散射,而穿过分子的透射光的频率,仍与入射光的频率相同,这时,称这种散射称为瑞利散射;还有一种散射

2、光,它约占总散射光强度的 10-610-10,该散射光不仅传播方向发生了改变,而且该散射光的频率也发生了改变,从而不同于激发光(入射光)的频率,因此称该散射光为拉曼散射。在拉曼散射中,散射光频率相对入射光频率减少的,称之为斯托克斯散射,因此相反的情况,频率增加的散射,称为反斯托克斯散射,斯托克斯散射通常要比反斯托克斯散射强得多,拉曼光谱仪通常大多测定的是斯托克斯散射,也统称为拉曼散射。散射光与入射光之间的频率差v称为拉曼位移,拉曼位移与入射光频率无关,它只与散射分子本身的结构有关。拉曼散射是由于分子极化率的改变而产生的。拉曼位移取决于分子振动能级的变化,不同化学键或基团有特征的分子振动,E反映

3、了指定能级的变化,因此与之对应的拉曼位移也是特征的。这是拉曼光谱可以作为分子结构定性分析的依据。3. 散射光示意图4. (二)光致发光(PL)谱 1.定义:所谓光致发光(Photoluminescence)指的是以光作为激励手段,激发材料中的电子从而实现发光的过程。它是光生额外载流子对的复合过程中伴随发生的现象。2.基本原理:由于半导体材料对能量高于其吸收限的光子有很强的吸收,吸收系数通常超过104cm-1,因此在材料表面约1m厚的表层内,由本征吸收产生了大量的额外电子-空穴对,使样品处于非平衡态。这些额外载流子对一边向体内扩散,一边通过各种可能的复合机构复合。其中,有的复合过程只发射声子,有

4、的复合过程只发射光子或既发射光子也发射声子。从微观上讲,光致发光可以分为两个步骤: 第一步是以光对材料进行激励,将其中电子的能量提高到一个非平衡态,也就是所谓的“激发态”; 第二步,处于激发态的电子自发地向低能态跃迁,同时发射光子,实现发光。 在这个过程中,有六种不同的复合机构会发射光子,它们是:(1)自由载流子复合 导带底电子与价带顶空穴的复合;(2)自由激子复合 晶体中原子的中性激发态被称为激子,激子复合也就是原子从中性激发态向基态的跃迁,而自由激子指的是可以在晶体中自由运动的激子,这种运动显然不传输电荷;(3)束缚激子复合 指被施主、受主或其他陷阱中心(带电的或不带电的)束缚住的激子的辐

5、射复合,其发光强度随着杂质或缺陷中心的增加而增加;(4)浅能级与本征带间的载流子复合即导带电子通过浅施主能级与价带空穴的复合,或价带空穴通过浅受主能级与导带电子的复合;(5)施主-受主对复合专指被施主-受主杂质对束缚着的电子-空穴对的复合,因而亦称为施主-受主对(D-A对)复合;(6)电子-空穴对通过深能级的复合即SHR复合,指导带底电子和价带顶空穴通过深能级的复合,这种过程中的辐射复合几率很小。 在上述辐射复合机构中,前两种属于本征机构,后面几种则属于非本征机构。由此可见,半导体的光致发光过程蕴含着材料结构与组份的丰富信息,是多种复杂物理过程的综合反映,因而利用光致发光光谱可以获得被研究材料

6、的多种本质信息。测量半导体材料的光致发光光谱的基本方法是,用激发光源产生能量大于被测材料的禁带宽度Eg、且电流密度足够高的光子流去入射被测样品,同时用光探测器接受并识别被测样品发射出来的光。(三)XRD图谱原理角度为布拉格角或称为掠射角。关于XRD的测量原理比较复杂,要知道晶体学和X射线知识。简单的来说(对粉末多晶):当单色X射线照射到样品时,若其中一个晶粒的一组面网(hkl)取向和入射线夹角为,满足衍射条件,则在衍射角2(衍射线与入射X射线的延长线的夹角)处产生衍射。但在实际应用中,我们只需用仪器做出XRD图谱,然后根据pdf卡片来知道所测物质的种类,和结构。pdf卡片是X射线衍射化学分析联

7、合会建立的物质的衍射数据库。他们制备了大量的物质,使用者只要把自己的图谱和标准图谱对比就能知道自己的物质种类及结构。随着计算机技术的发展,现在都是通过导入研究者测试得到的XRD图谱,电脑软件(如Jade)通过匹配度寻找与之比配的pdf卡片,很方便。怎么分析XRD图谱峰的面积表示晶体含量,面积越大,晶相含量越高。峰窄说明晶粒大,可以用谢乐公式算晶粒尺寸。峰高如果是相对背地强度高,表示晶相含量高,跟面积表示晶相含量一致。峰高如果是A峰相对B峰高很多,“两峰的高度比A/C”相对标准粉末衍射图对应峰的高度比要大很多,那么这个材料是A方向择优取向的工作原理X射线是原子内层电子在高速运动电子的轰击下跃迁而

8、产生的光辐射,主要有连续X射线和特征X射线两种。晶体可被用作X光的光栅,这些很大数目的原子或离子/分子所产生的相干散射将会发生光的干涉作用,从而影响散射的X射线的强度增强或 布拉格衍射示意图减弱。由于大量原子散射波的叠加,互相干涉而产生最大强度的光束称为X射线的衍射线。满足衍射条件,可应用布拉格公式:2dsin=n应用已知波长的X射线来测量角,从而计算出晶面间距d,这是用于X射线结构分析;另一个是应用已知d的晶体来测量角,从而计算出特征X射线的波长,进而可在已有资料查出试样中所含的元素.(四)原子力显微镜原子力显微镜(Atomic Force Microscope ,AFM),一种可用来研究包

9、括绝缘体在内的固体材料表面结构的分析仪器。它通过检测待测样品表面和一个微型力敏感元件之间的极微弱的原子间相互作用力来研究物质的表面结构及性质。将一对微弱力极端敏感的微悬臂一端固定,另一端的微小针尖接近样品,这时它将与其相互作用,作用力将使得微悬臂发生形变或运动状态发生变化。扫描样品时,利用传感器检测这些变化,就可获得作用力分布信息,从而以纳米级分辨率获得表面结构信息概括原子力显微镜(atomic force microscope,简称AFM)利用微悬臂感受和放大悬臂上尖细探针与受测样品原子之间的作用力,从而达到检测的目的,具有原子级的分辨率。由于原子力显微镜既可以观察导体,也可以观察非导体,从

10、而弥补了扫描隧道显微镜的不足。原子力显微镜是由IBM公司苏黎世研究中心的格尔德宾宁与斯坦福大学的Calvin Quate于一九八五年所发明的,其目的是为了使非导体也可以采用类似扫描探针显微镜(SPM)的观测方法。原子力显微镜(AFM)与扫描隧道显微镜(STM)最大的差别在于并非利用电子隧穿效应,而是检测原子之间的接触,原子键合,范德瓦耳斯力或卡西米尔效应等来呈现样品的表面特性。详细图1. 激光检测原子力显微镜探针工作示意图原子力显微镜的基本原理是:将一个对微弱力极敏感的微悬臂一端固定,另一端有一微小的针尖,针尖与样品表面轻轻接触,由于针尖尖端原子与样品表面原子间存在极微弱的排斥力,通过在扫描时

11、控制这种力的恒定,带有针尖的微悬臂将对应于针尖与样品表面原子间作用力的等位面而在垂直于样品的表面方向起伏运动。利用光学检测法或隧道电流检测法,可测得微悬臂对应于扫描各点的位置变化,从而可以获得样品表面形貌的信息。下面,我们以激光检测原子力显微镜(Atomic Force Microscope Employing Laser Beam Deflection for Force Detection,Laser-AFM)扫描探针显微镜家族中最常用的一种为例,来详细说明其工作原理。如图1所示,二极管激光器(Laser Diode)发出的激光束经过光学系统聚焦在微悬臂(Cantilever)背面,并从微

12、悬臂背面反射到由光电二极管构成的光斑位置检测器(Detector)。在样品扫描时,由于样品表面的原子与微悬臂探针尖端的原子间的相互作用力,微悬臂将随样品表面形貌而弯曲起伏,反射光束也将随之偏移,因而,通过光电二极管检测光斑位置的变化,就能获得被测样品表面形貌的信息。 原子力显微镜原理图在系统检测成像全过程中,探针和被测样品间的距离始终保持在纳米(10e-9米)量级,距离太大不能获得样品表面的信息,距离太小会损伤探针和被测样品,反馈回路(Feedback)的作用就是在工作过程中,由探针得到探针-样品相互作用的强度,来改变加在样品扫描器垂直方向的电压,从而使样品伸缩,调节探针和被测样品间的距离,反

13、过来控制探针-样品相互作用的强度,实现反馈控制。因此,反馈控制是本系统的核心工作机制。本系统采用数字反馈控制回路,用户在控制软件的参数工具栏通过以参考电流、积分增益和比例增益几个参数的设置来对该反馈回路的特性进行控制。(五)X射线光电子能谱 1. 简介 以X射线为激发光源的光电子能谱,简称XPS或ESCA1。处于原子内壳层的电子结合能较高,要把它打出来 ,需要能量较高的光子,以镁或铝作为阳极材料的X射线源得到的光子能量分别为1253.6电子伏和1486.6电子伏,此范围内的光子能量足以把不太重的原子的1s电子打出来。周期表上第二周期中原子的1s电子的XPS谱线见图1。结合能值各不相同,而且各元

14、素之间相差很大,容易识别(从锂的55电子伏增加到氟的694电子伏),因此,通过考查1s的结合能可以鉴定样品中的化学元素 除了不同元素的同一内壳层电子(inner shell electron)(如1s电子)的结合能各有不同的值而外,给定原子的某给定内壳层电子的结合能还与该原子的化学结合状态及其化学环境有关,随着该原子所在分子的不同,该给定内壳层电子的光电子峰会有位移,称为化学位移(chemical shift)。这是由于内壳层电子的结合能除主要决定于原子核电荷而外,还受周围价电子的影响。电负性比该原子大的原子趋向于把该原子的价电子拉向近旁,使该原子核同其1s电子结合牢固,从而增加结合能。如三氟乙酸乙酯CF3COOC2H5中的四个碳原子分别处于四种不同的化学环境,同四种具有不同电负性的原子结合。由于氟的电负性最大, CF婣中碳原子的C(1s)结合能最高(图2)。通过对化学位移的考察,XPS在化学上成为研究电子结构和高分子结构、链结构分析的有力工具。基本原理X射线光子的能量在10001500ev之间,不仅可使分子的价电子电离而且也可以把内层电子激发出来,内层电子的能级受分子环境的影响很小。 同一原子的内层电子结合能在不同分子中相差很大,故它是特征的。光子入射到固体表面激发出光电子,利用能量分析器对光电子进行分析的实验技术称为光电子能谱XPS的原理是用X射线去辐射样品,使原

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 生活休闲 > 社会民生

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号