高考数学理一轮资源库 选修系列学案73坐标系与参数方程

上传人:M****1 文档编号:561325317 上传时间:2023-04-07 格式:DOC 页数:10 大小:327.50KB
返回 下载 相关 举报
高考数学理一轮资源库 选修系列学案73坐标系与参数方程_第1页
第1页 / 共10页
高考数学理一轮资源库 选修系列学案73坐标系与参数方程_第2页
第2页 / 共10页
高考数学理一轮资源库 选修系列学案73坐标系与参数方程_第3页
第3页 / 共10页
高考数学理一轮资源库 选修系列学案73坐标系与参数方程_第4页
第4页 / 共10页
高考数学理一轮资源库 选修系列学案73坐标系与参数方程_第5页
第5页 / 共10页
点击查看更多>>
资源描述

《高考数学理一轮资源库 选修系列学案73坐标系与参数方程》由会员分享,可在线阅读,更多相关《高考数学理一轮资源库 选修系列学案73坐标系与参数方程(10页珍藏版)》请在金锄头文库上搜索。

1、2019届高考数学复习资料学案73坐标系与参数方程导学目标: 1.了解坐标系的有关概念,理解简单图形的极坐标方程.2.会进行极坐标方程与直角坐标方程的互化.3.理解直线、圆及椭圆的参数方程,会进行参数方程与普通方程的互化,并能进行简单应用自主梳理1极坐标系的概念在平面上取一个定点O,叫做极点;自极点O引一条射线Ox,叫做_;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个_设M是平面上任一点,极点O与点M的距离OM叫做点M的_,记为;以极轴Ox为始边,射线OM为终边的角xOM叫做点M的_,记为.有序数对(,)叫做点M的_,记作(,)2极坐标和直角坐

2、标的互化把直角坐标系的原点作为极点,x轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,设M是平面内任意一点,它的直角坐标是(x,y),极坐标为(,),则它们之间的关系为x_,y_.另一种关系为:2_,tan _.3简单曲线的极坐标方程(1)一般地,如果一条曲线上任意一点都有一个极坐标适合方程(,)0,并且坐标适合方程(,)0的点都在曲线上,那么方程(,)0叫做曲线的_(2)常见曲线的极坐标方程圆的极坐标方程_表示圆心在(r,0)半径为|r|的圆;_表示圆心在(r,)半径为|r|的圆;_表示圆心在极点,半径为|r|的圆直线的极坐标方程_表示过极点且与极轴成角的直线;_表示过(a,0)且垂直

3、于极轴的直线;_表示过(b,)且平行于极轴的直线;sin()0sin(0)表示过(0,0)且与极轴成角的直线方程4常见曲线的参数方程(1)直线的参数方程若直线过(x0,y0),为直线的倾斜角,则直线的参数方程为这是直线的参数方程,其中参数l有明显的几何意义(2)圆的参数方程若圆心在点M(a,b),半径为R,则圆的参数方程为00)的参数方程为自我检测1(教材改编题)点M的直角坐标为(,1),则它的极坐标为_2(原创题)在极坐标系中,点(,)与(,)的位置关系为_3(2011陕西)在直角坐标系xOy中,以原点为极点,x轴的正半轴为极轴建立极坐标系,设点A,B分别在曲线C1:(为参数)和曲线C2:1

4、上,则|AB|的最小值为_4(2011广州一模)在极坐标中,直线sin()2被圆4截得的弦长为_5(2010陕西)已知圆C的参数方程为(为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为sin 1,则直线l与圆C的交点的直角坐标为_.探究点一求曲线的极坐标方程例1 在极坐标系中,以(,)为圆心,为半径的圆的方程为_变式迁移1 如图,求经过点A(a,0)(a0),且与极轴垂直的直线l的极坐标方程探究点二极坐标方程与直角坐标方程的互化例2 (2009辽宁)在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立坐标系曲线C的极坐标方程为cos1,M、N分别为C与x轴,y轴的交

5、点(1)写出C的直角坐标方程,并求M、N的极坐标;(2)设MN的中点为P,求直线OP的极坐标方程变式迁移2 (2010东北三校第一次联考)在极坐标系下,已知圆O:cos sin 和直线l:sin(),(1)求圆O和直线l的直角坐标方程;(2)当(0,)时,求直线l与圆O公共点的一个极坐标探究点三参数方程与普通方程的互化例3 将下列参数方程化为普通方程:(1);(2);(3).变式迁移3 化下列参数方程为普通方程,并作出曲线的草图(1)(为参数);(2) (t为参数)探究点四参数方程与极坐标的综合应用例4 求圆3cos 被直线(t是参数)截得的弦长变式迁移4 (2011课标全国)在直角坐标系xO

6、y中,曲线C1的参数方程为(为参数)M是C1上的动点,P点满足2,P点的轨迹为曲线C2.(1)求C2的方程;(2)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.本节内容要注意以下两点:一、简单曲线的极坐标方程可结合极坐标系中和的具体含义求出,也可利用极坐标方程与直角坐标方程的互化得出同直角坐标方程一样,由于建系的不同,曲线的极坐标方程也会不同在没有充分理解极坐标的前提下,可先化成直角坐标解决问题二、在普通方程中,有些F(x,y)0不易得到,这时可借助于一个中间变量(即参数)来找到变量x,y之间的关系同时,在直角坐标系中,很

7、多比较复杂的计算(如圆锥曲线),若借助于参数方程来解决,将会大大简化计算量将曲线的参数方程化为普通方程的关键是消去其中的参数,此时要注意其中的x,y(它们都是参数的函数)的取值范围,也即在消去参数的过程中一定要注意普通方程与参数方程的等价性参数方程化普通方程常用的消参技巧有:代入消元、加减消元、平方后相加减消元等同极坐标方程一样,在没有充分理解参数方程的前提下,可先化成直角坐标方程再去解决相关问题(满分:90分)一、填空题(每小题6分,共48分)1直角(t为参数)恒过定点_2点M(5,)为极坐标系中的一点,给出如下各点的坐标:(5,);(5,);(5,);(5,)其中可以作为点M关于极点的对称

8、点的坐标的是_(填序号)3在极坐标系中,若点A,B的坐标分别为(3,),(4,),则AB_,SAOB_.(其中O是极点)4(2011广东)已知两曲线参数方程分别为(00)相切,则r_.6(2010广东韶关一模)在极坐标系中,圆心在(,)且过极点的圆的方程为_7(2009安徽)以直角坐标系的原点为极点,x轴的正半轴为极轴,并在两种坐标系中取相同的长度单位已知直线的极坐标方程为(R),它与曲线(为参数)相交于两点A和B,则AB_.8(2010广东深圳高级中学一模)在直角坐标系中圆C的参数方程为(为参数),若以原点O为极点,以x轴正半轴为极轴建立极坐标系,则圆C的极坐标方程为_二、解答题(共42分)

9、9(14分)O1和O2的极坐标方程分别为4cos,4sin.(1)把O1和O2的极坐标方程化为直角坐标方程;(2)求经过O1,O2交点的直线的直角坐标方程10(14分)(2011江苏,21C)在平面直角坐标系xOy中,求过椭圆(为参数)的右焦点,且与直线(t为参数)平行的直线的普通方程11(14分)(2010福建)在直角坐标系xOy中,直线l的参数方程为(t为参数)在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为2sin .(1)求圆C的直角坐标方程;(2)设圆C与直线l交于点A,B.若点P的坐标为(3,),求PAPB.学案73坐标系与参数

10、方程答案自主梳理1极轴极坐标系极径极角极坐标2.cos sin x2y2(x0)3.(1)极坐标方程(2)2rcos 2rsin r(R)cos asin b自我检测1(2,)(答案不唯一)2重合33解析C1:(x3)2(y4)21,C2:x2y21,两圆心之间的距离为d5.A曲线C1,B曲线C2,|AB|min523.44解析直线sin()2可化为xy20,圆4可化为x2y216,由圆中的弦长公式得224.5(1,1),(1,1)解析ysin ,直线l的直角坐标方程为y1.由得x2(y1)21.由得或直线l与圆C的交点的直角坐标为(1,1)和(1,1)课堂活动区例1 解题导引求曲线的极坐标方

11、程的步骤:建立适当的极坐标系,设P(,)是曲线上任意一点;由曲线上的点所适合的条件,列出曲线上任意一点的极径和极角之间的关系式;将列出的关系式进行整理、化简,得出曲线上的极坐标方程;证明所得方程就是曲线的极坐标方程,若方程的推导过程正确,化简过程都是同解变形,这一证明可以省略答案asin ,0解析圆的直径为a,设圆心为C,在圆上任取一点A(,),则AOC或,即AOC|.又acosAOCacos|asin .圆的方程是asin ,0.变式迁移1 解设P(,)是直线l上任意一点,OPcos OA,即cos a,故所求直线的极坐标方程为cos a.例2 解题导引直角坐标方程化为极坐标方程比较容易,只

12、要运用公式xcos 及ysin 直接代入并化简即可;而极坐标方程化为直角坐标方程则相对困难一些,解此类问题常通过变形,构造形如cos ,sin ,2的形式,进行整体代换其中方程的两边同乘以(或同除以)及方程两边平方是常用的变形方法但对方程进行变形时,方程必须同解,因此应注意对变形过程的检验解(1)由cos1得1.从而C的直角坐标方程为xy1,即xy2,当0时,2,所以M(2,0)当时,所以N.(2)M点的直角坐标为(2,0)N点的直角坐标为(0,)所以P点的直角坐标为,则P点的极坐标为,所以直线OP的极坐标方程为,(,)变式迁移2 解(1)圆O:cos sin ,即2cos sin ,圆O的直角坐标方程为

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 资格认证/考试 > 自考

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号