小学六年级数学上册知识点.doc

上传人:cn****1 文档编号:561106121 上传时间:2023-10-26 格式:DOC 页数:6 大小:95.01KB
返回 下载 相关 举报
小学六年级数学上册知识点.doc_第1页
第1页 / 共6页
小学六年级数学上册知识点.doc_第2页
第2页 / 共6页
小学六年级数学上册知识点.doc_第3页
第3页 / 共6页
小学六年级数学上册知识点.doc_第4页
第4页 / 共6页
小学六年级数学上册知识点.doc_第5页
第5页 / 共6页
点击查看更多>>
资源描述

《小学六年级数学上册知识点.doc》由会员分享,可在线阅读,更多相关《小学六年级数学上册知识点.doc(6页珍藏版)》请在金锄头文库上搜索。

1、人教版六年级数学上册知识点向桥中心小学 王本政老师(搜集)第一单元:位置1、用数对确定点的位置,第一个数表示列,第二个数表示行。如(3,5)表示(第三列,第五行)2、图形左、右平移: 列变,行不变 图形上、下平移: 行变,列不变第二单元 分数乘法一、分数乘法的意义:2、分数乘分数是求一个数的几分之几是多少。例如:表示求的四分之一是多少。1、分数乘整数与整数乘法的意义相同,都是求几个相同加数的和的简便运算。例如:5表示求5个的和是多少?二、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。为

2、了计算简便,能约分的要先约分,再计算。注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。分数的基本性质:分子分母同时乘或者除以一个相同的数时(0除外),分数值不变。三、乘法中比较大小时规律:一个数(0除外)乘大于1的数,积大于这个数。一个数(0除外)乘小于1的数(0除外),积小于这个数。一个数(0除外)乘1,积等于这个数。四、分数混合运算的运算顺序和整数的运算顺序相同。五、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。乘法交换律: a b = b a乘法结合律: ( a b )c = a ( b c ) 乘法分配律: ( a + b )c = ac + bc六、分数乘

3、法解决问题(一)(已知单位“1”的量,求单位“1”的几分之几是多少(具体量)用乘法) 一个数的几分之几= 一个数几分之几1、找单位“1”: 在分数句中分数的前面; 或 “占”、“是”、“比”的后面;2、看有没有多或少的问题;3、写数量关系式技巧:(1)“的” 相当于 “” “占”、“是”、“比”相当于“ = ”(2)分数前是“的”: 单位“1”的量分数=具体量(3)分数前是“多或少”的意思: 单位“1”的量(1+分数)=具体量;单位“1”的量(1-分数)=具体量(已知具体量求单位“1”的量,用除法)(二)、倒数 1、倒数的意义: 乘积是1的两个数互为倒数。1的倒数是1; 0没有倒数。强调:互为

4、倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。(要说清谁是谁的倒数)。2、求倒数的方法:(1)、求分数的倒数:交换分子分母的位置。(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。(3)、求带分数的倒数:把带分数化为假分数,再求倒数。(4)、求小数的倒数: 把小数化为分数,再求倒数。3、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。第三单元:分数除法一、分数除法1、分数除法的意义:分数除法是分数乘法的逆运算,就是已知两个数的积与其中一个因数,求另一个因数的运算。除以一个数是乘这个数的倒数,除以几就是乘这个数的几分之一。乘法: 因数 因数 =

5、 积 除法: 积 一个因数 = 另一个因数2、分数除法的计算法则:除以一个不为0的数,等于乘这个数的倒数。分数除法比较大小时规律:当除数大于1,商小于被除数;当除数小于1(不等于0),商大于被除数;当除数等于1,商等于被除数。“ ”叫做中括号。一个算式里,如果既有小括号,又有中括号,要先算小括号里面的, 再算中括号里面的。二、分数除法解决问题三、比和比的应用1、两个数相除又叫做两个数的比。在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。比的后项不能为0.例如 15 :10 = 1510=3/2(比值通常用分数表示,也可以用小数或整数表示)

6、2、比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。例: 路程速度=时间。3、比和比值的区别比:表示两个数的关系,可以写成比的形式,也可以用分数表示。比值:相当于商,是一个数,可以是整数,分数,也可以是小数。4、比和除法、分数的联系与区别:(区别)除法是一种运算,分数是一个数,比表示两个数的关系。比的前项相当于除法中的被除数,分数中的分子;比的后项相当于除法中的除数,分数中的分母;比号相当于除法中的除号,分数中的分数线;比值相当于除法的商,分数的分数值。注意:体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。(二)、比的基本性质1、

7、根据比、除法、分数的关系:商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。2、比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。根据比的基本性质,可以把比化成最简整数比。3.化简比:(2)用求比值的方法。注意: 最后结果要写成比的形式。如: 1510 = 1510 = 3/2 = 325.按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。一般用分数乘法来分配第四单元 圆的认识(一) 1.圆中心的

8、一点叫圆心,用O表示.一端在圆心,另一端在圆上的线段叫半径,用r表示.两端都在圆上,并过圆心的线段叫直径,用d表示.2.圆有无数条半径,有无数条直径.3.圆心决定圆的位置,半径决定圆的大小.4.把圆对折,再对折就能找到圆心.5.圆是轴对称图形,直径所在的直线是圆的对称轴.圆有无数条对称轴.6.在同一个圆里,直径的长度是半径的2倍,可以表示为d2r或rd/2.7.圆一周的长度就是圆的周长.半圆的周长等于圆周长的一半加一条直径。8.圆的周长除以直径的商是一个固定的数,我们把它叫做圆周率,用字母表示,计算时通常取3.14.Cd或C2r.13.14 26.28 39.42 412.56 515.7 6

9、18.84 721.98 825.12 928.26 1031.49.用S表示圆的面积, r表示圆的半径,那么S S环 10.周长相等时,圆的面积最大.面积相等时,圆的周长最小.第五单元:百分数一、百分数的意义和写法1、百分数的意义:表示一个数是另一个数的百分之几。百分数是指的两个数的比,因此也叫百分率或百分比。2、百分数和分数的主要联系与区别:联系:都可以表示两个量的倍比关系。区别:、意义不同:百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位;分数既可以表示具体的数,又可以表示两个数的关系,表示具本数时可以带单位。、百分数的分子可以是整数,也可以是小数;分数的分子不能是小数,

10、只能是除0以外的自然数。二、百分数和分数、小数的互化(一)百分数与小数的互化:1、小数化成百分数:把小数点向右移动两位,同时在后面添上百分号。2. 百分数化成小数:把小数点向左移动两位,同时去掉百分号。(二)百分数的和分数的互化1、百分数化成分数:先把百分数改写成分母是100的分数,能约分要约成最简分数。2、分数化成百分数: 用分数的基本性质,把分数分母扩大或缩小成分母是100的分数,再写成百分数形式。先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。(三)常见的分数与小数、百分数之间的互化三、用百分数解决问题(一)一般应用题1、常见的百分率的计算方法:一般来讲,出勤率、成活

11、率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。(一般出粉率在70、80%,出油率在30、40%。)(二)、折扣:商品按原定价格的百分之几出售,叫做折扣。通称“打折”。几折就表示十分之几,也就是百分之几十。例如八折=0.8=80,六折五=0.65=652、成数:一成是十分之一,也就是10%。三成五就是十分之三点五,也就是35%(三)、纳税1、纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。2、纳税的意义:税收是国家财政收入的主要来源之一。国家用收来的税款发展经济、科技、教育、文化和国防安全等事业。缴

12、纳的税款叫做应纳税额。应纳税额与各种收入的比率叫做税率。应纳税额 = 总收入 税率(四)利息 1、存款分为活期、整存整取和零存整取等方法。2、储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。3、存入银行的钱叫做本金。取款时银行多支付的钱叫做利息。利息与本金的比值叫做利率。利息=本金利率时间注意:如要交利息税,则:税后利息=利息(1-利息税率)国债和教育存款的利息不纳税第六单元:统计一、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间的关系。也就是各部分数量占总数的百分

13、比。二、常用统计图的优点:1、条形统计图:可以清楚的看出各种数量的多少。2、折线统计图:不仅可以看出各种数量的多少,还可以清晰看出数量的增减变化情况。3、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系。三、扇形的面积大小:在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关,圆心角越大,扇形越大。(因此扇形面积占圆面积的百分比,同时也是该扇形圆心角度数占圆周角度数的百分比。)第七单元:数学广角一、“鸡兔同笼”问题的特点:题目中有两个或两个以上的未知数,要求根据总数量,求出各未知数的单量。二、“鸡兔同笼”问题的解题方法1、列表猜测法2、假设法 (1) 假如都是兔 (2) 假如都是鸡 3、列方程法4、公式法:【鸡兔问题公式】 (1)已知总头数和总脚数,求鸡、兔各多少: (总脚数-每只鸡的脚数总头数)(每只兔的脚数-每只鸡的脚数)=兔数; 总头数-兔数=鸡数。 或者是(每只兔脚数总头数-总脚数)(每只兔脚数-每只鸡脚数)=鸡数; 总头数-鸡数=兔数。 例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?” 解一 (100-236)(4-2)=14(只)兔; 36-14=22(只)鸡。 解二 (436-100)(4-2)=22(只)鸡; 36-22=14(只)兔。 1

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 大杂烩/其它

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号