人教版 高中数学【选修 21】 :课时跟踪检测三合情推理

上传人:工**** 文档编号:560888292 上传时间:2023-06-22 格式:DOC 页数:7 大小:151KB
返回 下载 相关 举报
人教版 高中数学【选修 21】 :课时跟踪检测三合情推理_第1页
第1页 / 共7页
人教版 高中数学【选修 21】 :课时跟踪检测三合情推理_第2页
第2页 / 共7页
人教版 高中数学【选修 21】 :课时跟踪检测三合情推理_第3页
第3页 / 共7页
人教版 高中数学【选修 21】 :课时跟踪检测三合情推理_第4页
第4页 / 共7页
人教版 高中数学【选修 21】 :课时跟踪检测三合情推理_第5页
第5页 / 共7页
点击查看更多>>
资源描述

《人教版 高中数学【选修 21】 :课时跟踪检测三合情推理》由会员分享,可在线阅读,更多相关《人教版 高中数学【选修 21】 :课时跟踪检测三合情推理(7页珍藏版)》请在金锄头文库上搜索。

1、人教版高中数学精品资料课时跟踪检测(三) 合情推理层级一学业水平达标1观察图形规律,在其右下角的空格内画上合适的图形为()A.BC. D解析:选A观察可发现规律:每行、每列中,方、圆、三角三种形状均各出现一次,每行、每列有两阴影一空白,即得结果2下面几种推理是合情推理的是()由圆的性质类比出球的有关性质;由直角三角形、等腰三角形、等边三角形的内角和是180,归纳出所有三角形的内角和都是180;教室内有一把椅子坏了,则猜想该教室内的所有椅子都坏了;三角形内角和是180,四边形内角和是360,五边形内角和是540,由此得出凸n边形的内角和是(n2)180(nN*,且n3)A BC D解析:选C是类

2、比推理;是归纳推理,都是合情推理3在平面上,若两个正三角形的边长的比为12,则它们的面积比为14,类似地,在空间内,若两个正四面体的棱长的比为12,则它们的体积比为()A12 B14C18 D116解析:选C由平面和空间的知识,可知面积之比与边长之比成平方关系,在空间中体积之比与棱长之比成立方关系,故若两个正四面体的棱长的比为12,则它们的体积之比为18.4类比平面内“垂直于同一条直线的两条直线互相平行”的性质,可推出下列空间结论:垂直于同一条直线的两条直线互相平行;垂直于同一个平面的两条直线互相平行;垂直于同一条直线的两个平面互相平行;垂直于同一平面的两个平面互相平行,则其中正确的结论是()

3、A BC D解析:选B根据立体几何中线面之间的位置关系及有关定理知,是正确的结论5观察下列各等式:2,2,2,2,依照以上各式成立的规律,得到一般性的等式为()A.2B.2C.2D.2解析:选A观察发现:每个等式的右边均为2,左边是两个分数相加,分子之和等于8,分母中被减数与分子相同,减数都是4,因此只有A正确6观察下列等式11234934567254567891049照此规律,第n个等式为_解析:观察所给等式,等式左边第一个加数与行数相同,加数的个数为2n1,故第n行等式左边的数依次是n,n1,n2,(3n2);每一个等式右边的数为等式左边加数个数的平方,从而第n个等式为n(n1)(n2)(

4、3n2)(2n1)2.答案:n(n1)(n2)(3n2)(2n1)27我们知道:周长一定的所有矩形中,正方形的面积最大;周长一定的所有矩形与圆中,圆的面积最大,将这些结论类比到空间,可以得到的结论是_解析:平面图形与立体图形的类比:周长表面积,正方形正方体,面积体积,矩形长方体,圆球答案:表面积一定的所有长方体中,正方体的体积最大;表面积一定的所有长方体和球中,球的体积最大8如图(甲)是第七届国际数学教育大会(简称ICME7)的会徽图案,会徽的主体图案是由如图(乙)的一连串直角三角形演化而成的,其中OA1A1A2A2A3A7A81,如果把图(乙)中的直角三角形依此规律继续作下去,记OA1,OA

5、2,OAn,的长度构成数列an,则此数列an的通项公式为an_.解析:根据OA1A1A2A2A3A7A81和图(乙)中的各直角三角形,由勾股定理,可得a1OA11,a2OA2,a3OA3,故可归纳推测出an.答案:9在平面内观察:凸四边形有2条对角线,凸五边形有5条对角线,凸六边形有9条对角线,由此猜想凸n边形有几条对角线?解:因为凸四边形有2条对角线,凸五边形有5条对角线,比凸四边形多3条;凸六边形有9条对角线,比凸五边形多4条,于是猜想凸n边形的对角线条数比凸(n1)边形多(n2)条对角线,由此凸n边形的对角线条数为2345(n2),由等差数列求和公式可得n(n3)(n4,nN*)所以凸n

6、边形的对角线条数为n(n3)(n4,nN*)10已知f(x),分别求f(0)f(1),f(1)f(2),f(2)f(3),然后归纳猜想一般性结论,并证明你的结论解:f(x),所以f(0)f(1),f(1)f(2),f(2)f(3).归纳猜想一般性结论;f(x)f(x1).证明如下:f(x)f(x1).层级二应试能力达标1由代数式的乘法法则类比得到向量的数量积的运算法则:“mnnm”类比得到“abba”;“(mn)tmtnt”类比得到“(ab)cacbc”;“(mn)tm(nt)”类比得到“(ab)ca(bc)”;“t0,mtxtmx”类比得到“p0,apxpax”;“|mn|m|n|”类比得到

7、“|ab|a|b|”;“”类比得到“”其中类比结论正确的个数是()A1B2C3 D4解析:选B由向量的有关运算法则知正确,都不正确,故应选B.2类比三角形中的性质:(1)两边之和大于第三边;(2)中位线长等于底边长的一半;(3)三内角平分线交于一点可得四面体的对应性质:(1)任意三个面的面积之和大于第四个面的面积;(2)过四面体的交于同一顶点的三条棱的中点的平面面积等于该顶点所对的面面积的;(3)四面体的六个二面角的平分面交于一点其中类比推理方法正确的有()A(1) B(1)(2)C(1)(2)(3) D都不对解析:选C以上类比推理方法都正确,需注意的是类比推理得到的结论是否正确与类比推理方法

8、是否正确并不等价,方法正确结论也不一定正确3观察下列式子:1,1,1,根据以上式子可以猜想:1()A. B.C. D.解析:选C观察可以发现,第n(n2)个不等式左端有n1项,分子为1,分母依次为12,22,32,(n1)2;右端分母为n1,分子成等差数列,首项为3,公差为2,因此第n个不等式为1,所以当n2 016时不等式为:1.4设ABC的三边长分别为a,b,c,ABC的面积为S,内切圆半径为r,则r;类比这个结论可知:四面体PABC的四个面的面积分别为S1,S2,S3,S4,内切球的半径为r,四面体PABC的体积为V,则r()A. B.C. D.解析:选C将ABC的三条边长a,b,c类比

9、到四面体PABC的四个面面积S1,S2,S3,S4,将三角形面积公式中系数,类比到三棱锥体积公式中系数,从而可知选C.证明如下:以四面体各面为底,内切球心O为顶点的各三棱锥体积的和为V,VS1rS2rS3rS4r,r.5观察下图中各正方形图案,每条边上有n(n2)个圆圈,每个图案中圆圈的总数是S,按此规律推出S与n的关系式为_解析:每条边上有2个圆圈时共有S4个;每条边上有3个圆圈时,共有S8个;每条边上有4个圆圈时,共有S12个可见每条边上增加一个点,则S增加4,S与n的关系为S4(n1)(n2)答案:S4(n1)(n2)6可以运用下面的原理解决一些相关图形的面积问题:如果与一固定直线平行的

10、直线被甲、乙两个封闭的图形所截得的线段的比都为k,那么甲的面积是乙的面积的k倍你可以从给出的简单图形、中体会这个原理现在图中的两个曲线的方程分别是1(ab0)与x2y2a2,运用上面的原理,图中椭圆的面积为_解析:由于椭圆与圆截y轴所得线段之比为,即k,椭圆面积Sa2ab.答案:ab7观察下列两个等式:sin210cos240sin 10cos 40;sin26cos236sin 6cos 36.由上面两个等式的结构特征,你能否提出一个猜想?并证明你的猜想解:由知若两角差为30,则它们的相关形式的函数运算式的值均为.猜想:若30,则30,sin2cos2(3 0)sin cos(30).下面进

11、行证明:左边sin2cos(30)cos(30)sin sin2sin2cos2sin2右边所以,猜想是正确的故sin2cos2(30)sin cos(30).8已知在RtABC中,ABAC,ADBC于点D,有成立那么在四面体ABCD中,类比上述结论,你能得到怎样的猜想,并说明猜想是否正确及理由解:猜想:类比ABAC,ADBC,可以猜想四面体ABCD中,AB,AC,AD两两垂直,AE平面BCD.则.下面证明上述猜想成立如图所示,连接BE,并延长交CD于点F,连接AF.ABAC,ABAD,ACAD=A,AB平面ACD.而AF平面ACD,ABAF.在RtABF中,AEBF,.在RtACD中,AFCD,.,故猜想正确

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 资格认证/考试 > 自考

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号