趣味流体力学(常用版)

上传人:cl****1 文档编号:560868844 上传时间:2024-01-07 格式:DOC 页数:104 大小:2.40MB
返回 下载 相关 举报
趣味流体力学(常用版)_第1页
第1页 / 共104页
趣味流体力学(常用版)_第2页
第2页 / 共104页
趣味流体力学(常用版)_第3页
第3页 / 共104页
趣味流体力学(常用版)_第4页
第4页 / 共104页
趣味流体力学(常用版)_第5页
第5页 / 共104页
点击查看更多>>
资源描述

《趣味流体力学(常用版)》由会员分享,可在线阅读,更多相关《趣味流体力学(常用版)(104页珍藏版)》请在金锄头文库上搜索。

1、趣味流体力学(常用版)(可以直接使用,可编辑 完整版资料,欢迎下载)从赛车设计看空气动力学当你站在白云机场边,看到奔向空中的飞机,是否想过是什么让这巨大的机器翱翔于天际。空气的力量,那看似柔弱的空气的力量。空气动力学除了在航空器件中应用,汽车是另一个可以施展的领域。飞机中我们时常提到一个词汇是升力(Lift),在汽车中我们需要介绍另一个东西叫做负升力(Negative Lift)或者下压力(Downforce)。我们将一辆性能非常好的超级跑车、印第赛车或者方程式赛车倒过来,让轮子贴着天花板。如果这些车的速度足够高,并且天花板足够长的话,它们可以克服重力,贴在天花板上飞驰,这就是空气产生的下压力

2、的效果。轻柔的空气是如何具有力量的呢?我想每个人都对空气有一些感性的认识。当你坐在疾驰的汽车中,将手伸出车外(当然法规上不建议这样做),试着将手与迎风方向的角度不断调整,你会感觉到空气的升力和下压力。在读流体力学的时候,我的教授曾经为我们做过这样一个试验。找一张A4尺寸(297X210毫米)的纸,用食指和拇指捏着两个长边,让短边贴着自己的嘴唇,此时纸是自然垂下去的,如果对着纸的上表面吹气,会发现纸飘起来了。很显然是空气在对抗重力。如果将这个原理反向应用于跑车和赛车,空气会将汽车紧紧压在地面上,给汽车足够的抓地力。这个飘起来的A4纸的原理研究从亚里斯多德(公元前384-322年)就开始了。亚里斯

3、多德提出一个运动的物体在它的前方会产生真空,这是物体继续运动下去的原因。我们现在知道这样的解释是不正确的。1726年,牛顿提出了一些似是而非的观点,空气和液体对运动于其中的物体产生影响,这种影响主要与流速和流体的密度有关。这已经很接近现在的理论。不过牛顿最终没有将那个模糊的观点深入研究下去,而是将经典的牛顿力学理论来解释空气与物体。如我在下图所绘出的一样,从初等物理的角度来看,没有什么不妥之处,但是始终试验与理论的计算没有办法完全吻合。150年之后英国科学家瑞利(JWS.Rayleigh)爵士用水来模拟空气,发现牛顿的观点存在巨大问题。 1907年,俄罗斯科学家Joukowski发现流体中的物

4、体受到的力不但与流体的速度而且也与物体表面的长度有关。1903年,莱特兄弟的飞机是对Joukowski理论的很好的检验。0000其实早在1738年,伯努利就已经暗示了压强与流速之间有直接的关系1755年欧拉建立了完整的伯努利方程,这个方程的表述为。 P1/2v2常数(公式中P是压强是流体密度v是流体速度)伯努利的这套原理第一次应用于汽车上应该是化油器的喉管如何利用低压强将燃油从油室吸出来。我们再回到最初的A4纸,由于用空气吹纸的上表面,上部流速快,压强低,上下的压力差在对抗重力。这些空气动力学的基本原理有助于我们理解赛车的外形设计。赛车是一个追求速度的游戏,F1、印第、F3000和F3这些高速

5、玩具都在应用下压力来提高自己的性能。由于这些赛事不是在一个直线的赛道上比赛,直线速度不是决定胜负的唯一法宝,过弯速度(由下压力决定)往往更受关注。第一个带有下压力组件的赛车是瑞士人Michael May与1956年在保时捷550上改装的。在坐舱的顶上,May支了一个架子,架子上安置了反机翼形状的扰流件。这个扰流件的倾斜角度为-3度和17度。我们用下面的图来看,它是如何工作的。于May设计的扰流翼板下部的长度比上部长,所以流经下部的流体速度比较快,压强比较小,透过扰流翼板,空气产生了一个明显的下压力。May的设计非常成功,同级别的赛车没有办法与之抗衡,最终导致著名的Nurburgring赛道和M

6、onza赛道都拒绝这样设计的赛车出赛。这款改装过的保时捷550没有真正参加过比赛,这不能不说是一种遗憾。 1968年在F1历史上是难忘的一年。不仅仅是因为伟大的天才车手杰姆o克拉克在德国霍肯汉姆举行的一场二级方程式比赛中不幸意外丧生这一悲剧;也不仅仅是因为四轮驱动F1赛车的尝试遭遇全面挫折;更不是因为F1赛车上首次贴上了赞助商的标签。之所以难忘是人们终于开始意识到空气动力学理论在赛车车身设计上的重要性,F1赛车车身上首次出现了扰流翼板-这是一个划时代的尝试、从此,F1步入了空气动力学时代。于是有人开始信奉谁掌握了空气,谁就掌握了F1。扰流翼板在F1上的应用来得太猛了一些。一开始,扰流翼板还只是

7、前后车身上的小小的凸起。但仅仅过了几个星期,工程师们就已经开始在车身上装置巨大的、突出车身许多的前翼和尾翼了。可惜的是,那个年代科技的发展还无法让工程师计算出翼板究竟给赛车带来多大的影响,而且翼板普遍装配得不够结实,高速下很容易折断,而这种情况一旦发生将会非常危险。 1969年,F1赛车设计得像火鸡的腿一样,扰流翼板的层数不断增多,高度不断提升,悲剧看来在所难免。西班牙巴塞罗那Montjuich赛道上两次严重的事故,使CSI(国际汽联主管赛事部门)得不痛下决心禁止F1赛车车身上出现任何扰流翼板。在那次事故中,两辆莲花赛车的尾翼先后脱落,险些造成重大人员伤亡。扰流翼板本来应该全面禁止,但是一系列

8、争执之后CSI做出了让步。扰流翼板没有完全取消,但是,对其非常严格限制,限制的内容包括尺寸、布置位置、强度以及连接等等。表面的扰流翼板被限制了,赛车设计师开始想其他的办法来对抗,随后抽气机组件、地面效应组件开始出现,下压力还会继续提升,空气、设计师和FIA的游戏没有终止,悲剧也许也没有终结。流体力学 - 流体力学是力学的一个分支,它主要研究流体本身的静止状态和运动状态,以及流体和固体界壁间有相对运动时的相互作用和流动的规律。 流体力学中研究得最多的流体是水和空气。它的主要基础是牛顿运动定律和质量守恒定律,常常还要用到热力学知识,有时还用到宏观电动力学的基本定律、本构方程和物理学、化学的基础知识

9、。 1738年伯努利出版他的专著时,首先采用了水动力学这个名词并作为书名;1880年前后出现了空气动力学这个名词;1935年以后,人们概括了这两方面的知识,建立了统一的体系,统称为流体力学。 除水和空气以外,流体还指作为汽轮机工作介质的水蒸气、润滑油、地下石油、含泥沙的江水、血液、超高压作用下的金属和燃烧后产生成分复杂的气体、高温条件下的等离子体等等。 气象、水利的研究,船舶、飞行器、叶轮机械和核电站的设计及其运行,可燃气体或炸药的爆炸,以及天体物理的若干问题等等,都广泛地用到流体力学知识。许多现代科学技术所关心的问题既受流体力学的指导,同时也促进了它不断地发展。1950年后,电子计算机的发展

10、又给予流体力学以极大的推动。 流体力学的发展简史 流体力学是在人类同自然界作斗争和在生产实践中逐步发展起来的。古时中国有大禹治水疏通江河的传说;秦朝李冰父子带领劳动人民修建的都江堰,至今还在发挥着作用;大约与此同时,古罗马人建成了大规模的供水管道系统等等。 对流体力学学科的形成作出第一个贡献的是古希腊的阿基米德 ,他建立了包括物理浮力定律和浮体稳定性在内的液体平衡理论,奠定了流体静力学的基础。此后千余年间,流体力学没有重大发展。 直到15世纪,意大利 达芬奇 的著作才谈到水波、管流、水力机械、鸟的飞翔原理等问题;17世纪,帕斯卡阐明了静止流体中压力的概念。但流体力学尤其是流体动力学作为一门严密

11、的科学,却是随着经典力学建立了速度、加速度,力、流场等概念,以及质量、动量、能量三个守恒定律的奠定之后才逐步形成的。 17世纪,力学奠基人 牛顿 研究了在流体中运动的物体所受到的阻力,得到阻力与流体密度、物体迎流截面积以及运动速度的平方成正比的关系。他针对粘性流体运动时的内摩擦力也提出了牛顿粘性定律。但是,牛顿还没有建立起流体动力学的理论基础,他提出的许多力学模型和结论同实际情形还有较大的差别。 之后,法国皮托发明了测量流速的皮托管;达朗贝尔 对运河中船只的阻力进行了许多实验工作,证实了阻力同物体运动速度之间的平方关系;瑞士的 欧拉 采用了连续介质的概念,把静力学中压力的概念推广到运动流体中,

12、建立了欧拉方程,正确地用微分方程组描述了无粘流体的运动;伯努利从经典力学的能量守恒出发,研究供水管道中水的流动,精心地安排了实验并加以分析,得到了流体定常运动下的流速、压力、管道高程之间的关系伯努利方程。 欧拉方程和伯努利方程的建立,是流体动力学作为一个分支学科建立的标志,从此开始了用微分方程和实验测量进行流体运动定量研究的阶段。从18世纪起,位势流理论有了很大进展,在水波、潮汐、涡旋运动、声学等方面都阐明了很多规律。法国 拉格朗日 对于无旋运动,德国赫尔姆霍兹对于涡旋运动作了不少研究。在上述的研究中,流体的粘性并不起重要作用,即所考虑的是无粘流体。这种理论当然阐明不了流体中粘性的效应。 19

13、世纪,工程师们为了解决许多工程问题,尤其是要解决带有粘性影响的问题。于是他们部分地运用流体力学,部分地采用归纳实验结果的半经验公式进行研究,这就形成了水力学,至今它仍与流体力学并行地发展。1822年,纳维建立了粘性流体的基本运动方程;1845年,斯托克斯又以更合理的基础导出了这个方程,并将其所涉及的宏观力学基本概念论证得令人信服。这组方程就是沿用至今的纳维-斯托克斯方程(简称N-S方程),它是流体动力学的理论基础。上面说到的欧拉方程正是N-S方程在粘度为零时的特例。 普朗特学派从1904年到1921年逐步将N-S方程作了简化,从推理、数学论证和实验测量等各个角度,建立了边界层理论,能实际计算简

14、单情形下,边界层内流动状态和流体同固体间的粘性力。同时普朗克又提出了许多新概念,并广泛地应用到飞机和汽轮机的设计中去。这一理论既明确了理想流体的适用范围,又能计算物体运动时遇到的摩擦阻力。使上述两种情况得到了统一。 20世纪初,飞机的出现极大地促进了空气动力学的发展。航空事业的发展,期望能够揭示飞行器周围的压力分布、飞行器的受力状况和阻力等问题,这就促进了流体力学在实验和理论分析方面的发展。20世纪初,以儒科夫斯基、恰普雷金、普朗克等为代表的科学家,开创了以无粘不可压缩流体位势流理论为基础的机翼理论,阐明了机翼怎样会受到举力,从而空气能把很重的飞机托上天空。机翼理论的正确性,使人们重新认识无粘

15、流体的理论,肯定了它指导工程设计的重大意义。 机翼理论和边界层理论的建立和发展是流体力学的一次重大进展,它使无粘流体理论同粘性流体的边界层理论很好地结合起来。随着汽轮机的完善和飞机飞行速度提高到每秒50米以上,又迅速扩展了从19世纪就开始的,对空气密度变化效应的实验和理论研究,为高速飞行提供了理论指导。20世纪40年代以后,由于喷气推进和火箭技术的应用,飞行器速度超过声速,进而实现了航天飞行,使气体高速流动的研究进展迅速,形成了气体动力学、物理-化学流体动力学等分支学科。 以这些理论为基础,20世纪40年代,关于炸药或天然气等介质中发生的爆轰波又形成了新的理论,为研究原子弹、炸药等起爆后,激波在空气或水中的传播,发展了爆炸波理论。此后,流体力学又发展了许多分支,如高超声速空气动力学、超音速空气动力学、稀薄空气动力学、电磁流体力学、计算流体力学、两相(气液或气固)流等等。 这些巨大进展是和采用各种数学分析方法和建立大型、精密的实验设备和仪器等研究手段分不开的。从50年代起,电子计算机不断完善,使原来用分析方法难以进行研究的课题,可以用数值计算方法来进行,出现了计算流体力学这一新的分支学科。与此同时,由于民用和军用生产

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 建筑/环境 > 施工组织

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号