操作参数对旋风分离器分离性能的影响研究

上传人:pu****.1 文档编号:560604692 上传时间:2023-10-10 格式:DOC 页数:5 大小:143.50KB
返回 下载 相关 举报
操作参数对旋风分离器分离性能的影响研究_第1页
第1页 / 共5页
操作参数对旋风分离器分离性能的影响研究_第2页
第2页 / 共5页
操作参数对旋风分离器分离性能的影响研究_第3页
第3页 / 共5页
操作参数对旋风分离器分离性能的影响研究_第4页
第4页 / 共5页
操作参数对旋风分离器分离性能的影响研究_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

《操作参数对旋风分离器分离性能的影响研究》由会员分享,可在线阅读,更多相关《操作参数对旋风分离器分离性能的影响研究(5页珍藏版)》请在金锄头文库上搜索。

1、操作参数对旋风分离器分离性能的影响研究张振伟(东北大学,辽宁 沈阳110004)摘要:利用FLUENT的 RSM湍流模型对旋风分离器气固两相流场进行数值模拟得出:随着入口速度的增大,旋风分离器的压降也随之增大,且增大的幅度越来越大;随着流量的增加,旋风分离器的分离效率逐渐增大,小颗粒和中等颗粒的分离效率增加幅度较大,大颗粒的增加幅度稍小;随着气体中颗粒浓度的增大,分离总效率及各分离效率都逐渐增大,当浓度达到某一定值时,各种粒径颗粒的分离效率都会趋于稳定,大颗粒的分离效率在较低浓度时就已经趋于稳定,小颗粒的分离效率在较高浓度时才能趋于稳定。关键词:数值模拟;颗粒;分离效率1、旋风分离器工作原理旋

2、风分离器的结构如图1所示,主要由直筒和圆锥形灰斗、与直筒成切线布置的长方形进风管、顶部排气管和下部排尘管等几个部分组成。颗粒出口出口入口图1 旋风分离器结构简图Fig. 1 Structure graph of cyclone separator旋风分离器的工作原理是:含尘气体由长方形进气管进入旋风分离器,由于筒壁的约束作用,气流由直线运动变成圆周运动,旋转气流的绝大部分沿直筒壁成螺旋状向下朝圆锥形灰斗流动,通常称为外旋流。气体中的粉料颗粒在旋转过程中,在离心力的作用下,将重度大于气体的颗粒甩向器壁,颗粒一旦与器壁接触,便失去惯性力,靠入口速度的初始动量随外螺旋气流沿壁面下落,最终进入下部排尘

3、管。旋转向下的外旋气流在到达圆锥形灰斗时,因圆锥体形状的收缩按“旋转矩”不变原理,其切向速度不断提高(不考虑壁面摩擦损失)。在外旋流旋转过程中周边气流压力升高,在圆锥形灰斗中心部位形成低压区,由于低压区的吸引,当气流到达锥体下端某一位置时,便向分离器中心靠拢,即以同样的旋转方向在旋风分离器内部,由下反转向上,继续作螺旋运动,称为内旋流。最后,气流经上部排气管排出分离器,少部分未被分离出来的物料颗粒随气流逃出。气体中的颗粒在气体旋转向上进入排气管前碰到器壁,即可沿器壁滑落到排尘口,从而达到气固分离的目的。2、操作参数对分离性能的影响2.1入口速度的影响考虑不同入口速度对旋风分离器压降的影响,利用

4、数值模拟的方法分别对入口速度为5m/s、10m/s、15m/s、20m/s和25m/s时的压降和具有不同粒径颗粒的分离效率分别进行数值计算,得到不同入口速度下旋风分离器的压降。如表1所示,为了便于分析,将表中压降数据绘成曲线如图2所示。表1速度-压强表Table 1 Table of velocity and pressure速度(m/s)510152025压降(pa)13234572314282312图2速度对压强影响Fig. 2 Influence of velocity to pressure从图2中可以看出,随着入口速度的增大,旋风分离器的压降也随之增大,且增大的幅度越来越大。从能量角

5、度看,增大旋风分离器入口的速度会增大能量的损失,因为旋风分离器的磨损与气体速度的四次方成正比,所以过大的入口速度会增大旋风分离器的压降。因此,应当在保证旋风分离器的分离性能的基础上尽量采用较低的入口速度,节约能量。表2不同速度下不同粒径分离效率值Table 2 Separation efficiency of the different size and different velocity 颗粒粒径(m)1510152025305m/s模拟效率(%)10.213.526.845.255.668.286.215m/s模拟效率(%)13.519.635.253.460.576.390.120m/

6、s模拟效率(%)15.627.843.068.379.683.592.725m/s模拟效率(%)19.825.340.579.184.19298.1图3速度对分离效率影响Fig. 3 Influence of velocity to separation efficiency 考虑不同入口速度对旋风分离器中颗粒的分离效率的影响。不同入口速度下的颗粒分离效率的数值计算值如表2所示,并将其绘成曲线如图3所示,便于直观地分析。从图3中可以看出,当入口速度增大时,旋风分离器的分离效率也随之增大;当入口速度减小时,旋风分离器的分离效率也随之减小。同时从图3中看出,入口速度的变化对分离效率曲线的影响比较大

7、。经模拟分析,当速度为25m/s时的小颗粒的分离效率比20m/s时略小。分析其可能原因,由于湍流及微粒碰撞弹跳等因素促使沉积在器壁处的微粒重新被卷扬起来;又由于入口气体速度的加大,使向心径向气速也增加;下行轴向气速也增加,微粒停留时间变短;圆锥形灰斗底部被捕集的微粒受到的返气夹带的影响更加严重,这些诸多不利因素的综合结果,使分离效率出现下降趋势。2.2颗粒直径的影响旋风分离器的总效率是针对某一特定微粒群而言的,在不同的生产条件下,分离器的用途不同,处理的微粒性质也不同,用它作为旋风分离器的性能指标不具有通用的可比性。因而,还应该考虑分离器对于不同粒径微粒的分离效率,它是针对某一特定直径的微粒而

8、言的,表示的是旋风分离器对特定直径微粒的分离效率,与总分离效率相比更能说明分离效率的分离性能。所以,这里讨论的是微粒的特定直径分离效率,以下简称分离效率。颗粒随气体进入旋风分离器,在气流的带动下,由于受到方向向内的阻力和方向向外的离心力作用而沿着筒体作旋转运动。离心力正比于微粒质量,粒径大的微粒是容易被捕集的。对于小颗粒来讲,所受到的离心力较小,由于小微粒对气流的跟随性较好,有相当一部分微粒跟随气流在分离器内作旋转运动直至最后被气流带出分离器而逃逸,或最终落入圆锥形灰斗底部而被捕集。表3不同微粒粒径下分离效率值Table 3 Separation efficiency under differ

9、ent size of particle 粒径(m)151.0152025分离效率(%)15.627.843.272.387.692.3从表3的数值计算值和图4中的颗粒粒径对分离效率的影响图中得出,随着微粒粒径的增加,分离效率呈现增大的趋势。分析其原因:大颗粒所受的离心力增大,因此进入分离器后随气流旋转运动的圈数要小于小颗粒,大颗粒较早就在筒体壁段碰壁,较快的落入圆锥形灰斗底部而被分离;对于小颗粒,所受的离心力较小,由于径向气流的向心作用,较容易被气流夹带出顶部排气管而逃逸。除此之外,由于小颗粒对气流的跟随性较好,有相当大一部分微粒跟随气流在分离器内作旋转运动,直至最后才被气流带出分离器而逃逸

10、,或最终被捕集,也有的微粒在旋风分离器内作无限循环运动,此种情况被认为旋风分离器对该微粒无法分离。从数值模拟中可以看出,小粒径的颗粒被捕集的效率不高,因此旋风分离器常被用作含尘气体分离系统的一级回收。图4 颗粒粒径对分离效率的影响Fig. 4 Influence of particle diameter to separation efficiency理论上讲,对任意旋风分离器都有一确定的临界粒径,小于临界粒径的颗粒是完全不能被捕集的,但在实际中,颗粒在进入分离器后,由于颗粒间的相互碰撞,颗粒的团聚夹带及静电和分子引力等因素,使颗粒的运动具有很大的随机性,一部分小于临界粒径的细颗粒也能被捕集,

11、一部分大于临界粒径的大颗粒也会逃逸。2.3颗粒浓度的影响入口气体颗粒浓度对旋风分离器的效率影响也较大。下面研究不同颗粒浓度下的分离效率,在相同流量下,考察气体含尘量分别为1%、3%、5%、7%下的分离效率。表4为不同颗粒浓度总效率与分离效率的模拟计算值,为了直观绘制成曲线图。如图5所示为颗粒浓度对分离效率的影响,随着气体中颗粒浓度的增大,分离总效率及各分离效率都逐渐增大;小颗粒增大的幅度较大,而大颗粒增大的幅度较小。而且浓度越大,小颗粒分离效率提高越多,这是因为浓度较高时,气流对小颗粒的携带作用更加明显,所以效率提高较大。当浓度达到某一定值时,各种粒径颗粒的分离效率都会趋于稳定。大颗粒的分离效

12、率在较低浓度时就已经趋于稳定,而小颗粒的分离效率将在较高浓度时才能趋于稳定。表4不同颗粒浓度总效率与分离效率值Table 4 The total efficiency and separation efficiency under different particle concentration流量(m3/h)3035455055总效率(%)5565.5747578.15m颗粒分离效率22.136.248.555.857.610m颗粒分离效率76.883.687.589.292.115m颗粒分离效率92.697.298.198.699.8图5 颗粒浓度对分离效率的影响Fig. 5 Influe

13、nce of particle concentration to separation efficiency此外,在旋风分离器的实际应用中,当处理气体的颗粒浓度较高时,颗粒对壁面的磨损也加剧,使得分离器的使用寿命变短,而颗粒也会被粉碎变细,更加不利于分离。因此,在很多情况下,人们并不指望只经过一次分离便达到分离目的,而是经过几次分离,逐级减小颗粒群的含量和粒度,最终达到分离要求。3结论随着入口速度的增大,旋风分离器的压降也随之增大,且增大的幅度越来越大。随着流量的增加,旋风分离器的分离效率逐渐增大,尤其是小颗粒和中等颗粒效率的增加幅度更大,大颗粒的增加幅度稍小。虽然增大处理气量可以提高分离效率

14、,却是以过大的能量消耗为代价的,而且当处理气量增大到某一程度时,会伴随有颗粒粉碎、器壁磨损等负面效应。相同的流量下,随着颗粒粒径的增大,其分离效率逐渐增大,但增加的幅度越来越小,最终趋向稳定。随着气体中颗粒浓度的增大,分离总效率及各分离效率都逐渐增大,气流对小颗粒的携带作用更加明显,其分离效率提高较大,而大颗粒增大的幅度较小。当浓度达到某一定值时,各种粒径颗粒的分离效率都会趋于稳定。大颗粒的分离效率在较低浓度时就已经趋于稳定,而小颗粒的分离效率在较高浓度时才能趋于稳定。参考文献1. 谭天佑,梁风珍. 工业通风除尘技术M. 北京:中国建筑工业出版社,1984,3.2. 王博. 旋风分离器内气固两相运动的数值仿真研究D. 西安建筑科技大学硕士学位论文. 2003:1-10.3. 王子云,付祥钊. 旋风除尘器的气固两相流内湍流的数值模拟与分析J. 河南科技大学学报,2007,4(8):53-56.4. 毛羽,庞磊,王小伟等. 旋风分离器内三维紊流场的数值模拟J. 石油炼制与化工. 2002,33(2):1-65. 王海刚,刘石. 不同湍流模型在旋风分离器三维数值模拟中的应用和比较J.热能动力工程,2003,18(4):337-342.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 商业/管理/HR > 营销创新

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号