天然产物提取分离新技术.doc

上传人:夏** 文档编号:560587927 上传时间:2023-08-31 格式:DOC 页数:6 大小:33.51KB
返回 下载 相关 举报
天然产物提取分离新技术.doc_第1页
第1页 / 共6页
天然产物提取分离新技术.doc_第2页
第2页 / 共6页
天然产物提取分离新技术.doc_第3页
第3页 / 共6页
天然产物提取分离新技术.doc_第4页
第4页 / 共6页
天然产物提取分离新技术.doc_第5页
第5页 / 共6页
点击查看更多>>
资源描述

《天然产物提取分离新技术.doc》由会员分享,可在线阅读,更多相关《天然产物提取分离新技术.doc(6页珍藏版)》请在金锄头文库上搜索。

1、 天然产物提取分离新技术 常温超高压技术 高压生物化学研究已经证明:压力达到一定值,蛋白质、多糖(淀粉、纤维素)等有机大分子会发生变性,但生物碱、低聚糖、甾、萜、苷、挥发油、维生素等小分子物质则不发生任何变化。 在高压生物化学的研究中还证明了:高压灭菌的机理是,压力作用于微生物,使细胞壁变性、破裂,细胞内容物外泄,从而使微生物致死。在肉、鱼、水果、蔬菜的高压加工中也证实了细胞的这种变化。 超高压提取就是利用了超高压对生物材料的这种作用实现有效成分提取的。植物细胞壁上有很多微孔,因此我们可以把植物细胞壁看作是由许多微孔组成的薄膜。当植物细胞处于溶剂中时,溶剂将通过这些微孔进入细胞内部。 1.升压

2、时: 通过渗透作用,溶剂进入细胞内部;由于我们施加的压力非常大,因此通量很大,细胞内部在短时间内就会充满溶剂。 细胞内部充满溶剂后,细胞壁两侧压力平衡。 2.保压时: 细胞内容物与进入细胞内部的溶剂接触,经过一段时间,有效成分溶于这些溶剂中。 3.泄压时: 细胞外部的压力减小为零,细胞内部的压力仍然保持平衡时的压力,此时压力差与施加压力时方向相反。由于我们施加的是超高压,因此这种反方向的压力差仍然是很大的。 4.在反方向压力作用下,细胞壁变形;如果变形超过了其反向变形极限,细胞壁破坏;于是,溶解了有效成分的溶剂泄出,与其它溶剂汇合。 5.如果在反方向压力作用下细胞壁的变形仍然没有超过其反向变形

3、极限,细胞内部已经溶解了有效成分的溶剂将通过渗透作用排出,与其它溶剂汇合。由于反方向压力差非常大,因此溶解了有效成分的溶剂快速且完全地泄出。 常温超高压提取技术可以使用多种溶剂,包括水、不同浓度的醇和其它有机溶剂,可以从不同的天然产物中提取不同性质(如生物碱、黄酮、皂甙、多糖、挥发油)的有效成分。 超声波提取技术 超声波是一种高频率的机械波。超声场主要通过超声空化向体系提供能量。频率范围在15-60kHz的超声,常被用于过程强化和引发化学反应,超声波在天然产物有效成分提取等方面已有了一定作用。其原理主要是利用超声的空化作用对细胞膜的破坏,有助于有效成分的溶出与释放,超声波使提取液不断震荡,有助

4、于溶质扩散,同时超声波的热效应使水温基本在57,对原料有水浴作用。超声波提取与传统的回流提取、索氏提取发比较,具有提取速度快、时间短、收率高、无需加热等优点。已被许多天然产物分析过程选为供试样处理的手段。 微波辅助提取技术 微波是一种非电离的电磁辐射。微波辅助提取(Microwave Assisted Extraction,MAE)是利用微波能来提高萃取率的新发展起来的技术。被提取的极性分子在微波电磁场中快速转向及定向排列,从而产生撕裂和相互摩擦引起发热,可以保证能量的快速传递和充分利用,易于溶出和释放。微波辅助提取(以下简称微波提取)的研究表明,微波辐射诱导萃取技术具有选择性高、操作时间短、

5、溶剂耗量少、有效成分收率高的特点,已被成功应用在药材的浸出、中药活性成分的提取方面。它的原理是利用磁控管所产生的每秒24.5亿次超高频率的快速震动,使药材内分子间相互碰撞、挤压,这样有利于有效成分的浸出,提取过程中,药材不凝聚,不糊化,克服了热水提取易凝聚、易糊化的缺点。 微波萃取技术有一定的局限性,只适宜于对热稳定的产物。 酶法提取技术 天然植物的细胞壁由纤维素构成,其中的有效成分往往是包裹在细胞壁内。酶法就是利用纤维素酶、果胶酶、蛋白酶等(主要是纤维素酶),破坏植物的细胞壁,以利于有效成分最大限度溶出的一种方法。酶反应可以较温和的将植物组织分解,从而大幅度提高提取效率。 分子蒸馏技术 分子

6、蒸馏技术出现于20世纪30年代,目前在许多国家工业上得到了规模化应用。中国的分子蒸馏技术现在已经成功运用于医药、精细化工、油脂化工、食品添加剂等行业中,在中药产业正逐步得到重视。 在高真空度下,液体分子只需很小的能量就能克服液体内部引力,离开液面而蒸发。分子蒸馏是在极高的真空度下,依靠混合物分子运动平均自由程的差异,是液体在远低于其沸点的温度下迅速得到分离。 分子运动自由程指一个分子与其它分子相邻两次碰撞之间所走过的路程。某时间间隔内自由程的平均值称为分子运动平均自由程。在压力和温度一定的条件下,不同种类的分子由于分子有效直径的不同,其分子平均自由程也不同。从统计学观点来看,不同种类的分子逸出

7、液面后不与其他分子碰撞的飞行距离是不同的,轻分子的平均自由程大,重分子的平均自由程大小。如果冷凝面与蒸发面的间距小于轻分子的平均自由程,而大于重分子的平均自由程,这样轻分子可达到冷凝面被冷却收集,重分子因达不到冷凝面相互碰撞而返回液面,从而实现了混合物料的分离。 挥发油在天然产物中占有重要的地位,许多挥发油具有强烈的生理活性,而对挥发油的提取、纯化及制剂一直是天然产物研究开发的难点。分子蒸馏技术在天然产物挥发油的分离纯化中有很好的优势与潜力,与超临界流体萃取合用,则既充分发挥了超临界提油率高、充分保留挥发油有效成分的特点,又达到了分子蒸馏很好地对超临界萃取物进行有效的纯化分离的效果。 超临界流

8、体萃取技术 超临界流体萃取(Supercritical Fluid Extraction, SFE)技术是20世纪60年代兴起的一种新型分离技术。20世纪80年代中期以来,由于其选择分离效果好、提取率高、产物没有有机溶剂残留、有利于热敏性物质和易氧化物质的萃取等特点SFE技术逐渐被运用到天然产物有效成分的提取分离上,并且与GC、IR、GC-MS、HPLC等联用形成有效的分离技术。 超临界流体(Supercritical Fluid,SF)是指在临界温度(Tc)和临界压力(Pc)以上,以流体形式存在的物质,目前研究较多、最常用的超临界流体是二氧化碳。在超临界状态下将SF与待分离的物质接触,使其有

9、选择性地溶解其中的某些组分。SF的密度和介电常数随着密闭体系压力的增加而增加,因此利用程序升压可将不同极性的成分进行分步提取。然后通过减压、升温或吸附的方法使超临界流体变成普通气体,让被萃取物质分离析出,从而达到分离提纯的目的,这就是超临界流体萃取的基本原理。 目前,超临界萃取技术的分离主要用于挥发油、生物碱类、香豆素和木脂素类、黄酮类、萜类、苷类、醌类等天然产物活性成分提取。 大孔树脂吸附 大孔吸附树脂是20世纪60年代开发出的一类新型高分子分离材料,是一种高聚物吸附剂,根据其孔径、比表面积及构成类型分为许多型号。20世纪70年代末我国有学者开始用来进行天然产物有效成分的分离纯化研究。 大孔

10、吸附树脂分离技术的应用原理主要是利用特殊的吸附剂大孔吸附树脂的吸附性和分子筛相结合的原理,从天然产物提取液中有选择的吸附住其中的有效成分,去除杂质。特别是非极性吸附树脂,在吸附提取液中的有效成分时,主要是物理结构(如比表面积、孔径等)在起吸附作用。 采用大孔吸附树脂分离纯化操作的基本程序大多是:天然产物提取液通过大孔树脂吸附有效成分乙醇溶液梯度洗脱回收溶剂得到提取液浸膏干燥半成品。 大孔吸附树脂工艺对于富集天然产物中的黄酮类、生物碱类、苷类等有效成分是卓有成效的。 膜分离技术 膜分离技术(Membrane Separation Technique,MST)是一项新兴的高效分离技术,已被国际公认

11、为是20世纪末到21世纪中期最有发展前途的一项重大高新生产技术。是利用天然或人工合成的具有选择透过性的薄膜,以外界能量或化学位差为推动力,对双组分或多组分体系进行分离、分级、提纯或富集的技术。膜分离技术(以下简称膜技术)包括超滤、微滤、纳滤和反渗透等。 目前该技术也被广泛应用于中药制剂的生产方面,尤其是超滤技术自20世纪90年代以来以其高效、节能和绿色等特点,在中药制剂中的应用越来越多。 膜分离技术的应用原理近似机械筛,是以压力为推动力,实现溶质与溶剂的分离,溶剂(水)和其它小分子量溶质透过具有不对称微孔结构的滤膜,大分子溶质和微粒(如蛋白质、病毒、细菌、胶体等)被滤膜阻留,从而达到分离、提纯

12、和浓缩产品的目的。在常温下操作,无相变,能耗低。 采用超滤技术可以滤除天然产物水提液中的相对分子量大于几万的杂质(无效成分),如纤维素、黏液质、树胶、果胶、淀粉、鞣质、蛋白质(少数药材除外)、树脂等成分。 对于相对分子量几千以上的活性成分,采用超滤法浓缩也极其有效。当某些蛋白质、多肽和多糖等是天然产物的有效成分时,先设法除掉更大分子量的杂质和其它可沉淀成分。然后超滤浓缩,使水分和小分子无效成分、无机盐、单糖等成分透过滤膜而被滤除,从而提高产品的纯度。采用超滤膜分离技术进行浓缩,滤除提取液中水分和小分子量杂质,可达到节省能耗、提高药品纯度的效果。 澄清技术 近年来,一些新材料、新技术开始应用于天

13、然产物提取液的澄清。不仅可降低成本、缩短生产周期,也能保证制剂稳定性及有效成分的含量。如101果汁澄清剂、甲壳素、ZTC天然澄清剂等在提取液澄清方面的应用,很大程度上解决了经典乙醇沉淀法引起的饿问题。101果汁澄清剂是水溶性胶状物质,安全无毒,不引入杂质并可随沉淀后的不溶性物质一同除去。甲壳素类(如壳聚糖)带正电荷,可沉降提取液中带负电荷的悬浮物。ZTC天然澄清剂可出去鞣质、蛋白质、胶体等不稳定成分,且对有效成分影响不大。 分子印迹技术 分子印迹技术(Molecular Imprinting Technology,MIT)是20世纪末出现的一种高选择性分离技术,这种技术是选用能与印迹分子产生特

14、定相互作用的功能性单体,在印迹分子周围与交联剂进行聚合,形成三位交联的聚合物网络,然后,通过合适的溶剂除去印迹分子,在聚合物网络中形成空间和化学功能与印迹分子互补的空穴。整个聚合过程可分为三步:印迹、聚合、去除印迹分子。 谢建春等人用非共价法,在极性溶剂中以丙烯酰胺作为功能单体,以强极性化合物槲皮素为印迹分子,制备了分子印迹聚合物(Molecular Imprinting Polymer, MIP)。液相色谱实验表明。MIP对槲皮素具有特异的亲和性。将此MIP直接分离银杏叶提取物水解液,得到主要含槲皮素及与槲皮素结构相似化合物山奈酚两种黄酮的组分。有研究证实了MIT用于直接分离、提取中草药中具有特定药效化合物的可行性。

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 生活休闲 > 社会民生

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号