《排列组合问题96849.doc》由会员分享,可在线阅读,更多相关《排列组合问题96849.doc(7页珍藏版)》请在金锄头文库上搜索。
1、排列组合问题I一、知识点:1分类计数原理:做一件事情,完成它可以有n类办法,在第一类办法中有种不同的方法,在第二类办法中有种不同的方法,在第n类办法中有种不同的方法那么完成这件事共有 种不同的方法2.分步计数原理:做一件事情,完成它需要分成n个步骤,做第一步有种不同的方法,做第二步有种不同的方法,做第n步有种不同的方法,那么完成这件事有种不同的方法 3排列的概念:从个不同元素中,任取()个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从个不同元素中取出个元素的一个排列4排列数的定义:从个不同元素中,任取()个元素的所有排列的个数叫做从个元素中取出元素的排列数,用符号表示5排列数公式
2、:()6阶乘:表示正整数1到的连乘积,叫做的阶乘规定7排列数的另一个计算公式:=8组合的概念:一般地,从个不同元素中取出个元素并成一组,叫做从个不同元素中取出个元素的一个组合9组合数的概念:从个不同元素中取出个元素的所有组合的个数,叫做从个不同元素中取出个元素的组合数用符号表示10组合数公式:或11组合数的性质1:规定:; 2:+ 二、解题思路:解排列组合问题,首先要弄清一件事是“分类”还是“分步”完成,对于元素之间的关系,还要考虑“是有序”的还是“无序的”,也就是会正确使用分类计数原理和分步计数原理、排列定义和组合定义,其次,对一些复杂的带有附加条件的问题,需掌握以下几种常用的解题方法:特殊
3、优先法对于存在特殊元素或者特殊位置的排列组合问题,我们可以从这些特殊的东西入手,先解决特殊元素或特殊位置,再去解决其它元素或位置,这种解法叫做特殊优先法.例如:用0、1、2、3、4这5个数字,组成没有重复数字的三位数,其中偶数共有_个.(答案:30个)科学分类法对于较复杂的排列组合问题,由于情况繁多,因此要对各种不同情况,进行科学分类,以便有条不紊地进行解答,避免重复或遗漏现象发生例如:从6台原装计算机和5台组装计算机中任取5台,其中至少有原装与组装计算机各两台,则不同的选取法有_种.(答案:350)插空法解决一些不相邻问题时,可以先排一些元素然后插入其余元素,使问题得以解决例如:7人站成一行
4、,如果甲乙两人不相邻,则不同排法种数是_.(答案:3600)捆绑法相邻元素的排列,可以采用“整体到局部”的排法,即将相邻的元素当成“一个”元素进行排列,然后再局部排列例如:6名同学坐成一排,其中甲、乙必须坐在一起的不同坐法是_种.(答案:240)排除法从总体中排除不符合条件的方法数,这是一种间接解题的方法.b、排列组合应用题往往和代数、三角、立体几何、平面解析几何的某些知识联系,从而增加了问题的综合性,解答这类应用题时,要注意使用相关知识对答案进行取舍.例如:从集合0,1,2,3,5,7,11中任取3个元素分别作为直线方程Ax+By+C=0中的A、B、C,所得的经过坐标原点的直线有_条.(答案
5、:30)三、讲解范例:例1 由数字、组成无重复数字的七位数(1)求三个偶数必相邻的七位数的个数;(2)求三个偶数互不相邻的七位数的个数解 (1):因为三个偶数、必须相邻,所以要得到一个符合条件的七位数可以分为如下三步:第一步将、四个数字排好有种不同的排法;第二步将、三个数字“捆绑”在一起有种不同的“捆绑”方法; 第三步将第二步“捆绑”的这个整体“插入”到第一步所排的四个不同数字的五个“间隙”(包括两端的两个位置)中的其中一个位置上,有种不同的“插入”方法根据乘法原理共有720种不同的排法所以共有720个符合条件的七位数解(2):因为三个偶数、互不相邻,所以要得到符合条件的七位数可以分为如下两步
6、:第一步将、四个数字排好,有种不同的排法;第二步将、分别“插入”到第一步排的四个数字的五个“间隙”(包括两端的两个位置)中的三个位置上,有种“插入”方法根据乘法原理共有1440种不同的排法所以共有1440个符合条件的七位数例 将、分成三组,共有多少种不同的分法?解:要将、分成三组,可以分为三类办法:()分法、()分法、()分法下面分别计算每一类的方法数:第一类()分法,这是一类整体不等分局部等分的问题,可以采用两种解法解法一:从六个元素中取出四个不同的元素构成一个组,余下的两个元素各作为一个组,有种不同的分法解法二:从六个元素中先取出一个元素作为一个组有种选法,再从余下的五个元素中取出一个元素
7、作为一个组有种选法,最后余下的四个元素自然作为一个组,由于第一步和第二步各选取出一个元素分别作为一个组有先后之分,产生了重复计算,应除以所以共有15种不同的分组方法 第二类()分法,这是一类整体和局部均不等分的问题,首先从六个不同的元素中选取出一个元素作为一个组有种不同的选法,再从余下的五个不同元素中选取出两个不同的元素作为一个组有种不同的选法,余下的最后三个元素自然作为一个组,根据乘法原理共有60种不同的分组方法 第三类()分法,这是一类整体“等分”的问题,首先从六个不同元素中选取出两个不同元素作为一个组有种不同的取法,再从余下的四个元素中取出两个不同的元素作为一个组有种不同的取法,最后余下
8、的两个元素自然作为一个组由于三组等分存在先后选取的不同的顺序,所以应除以,因此共有15种不同的分组方法 根据加法原理,将、六个元素分成三组共有:15601590种不同的方法例 一排九个坐位有六个人坐,若每个空位两边都坐有人,共有多少种不同的坐法?解:九个坐位六个人坐,空了三个坐位,每个空位两边都有人,等价于三个空位互不相邻,可以看做将六个人先依次坐好有种不同的坐法,再将三个空坐位“插入”到坐好的六个人之间的五个“间隙”(不包括两端)之中的三个不同的位置上有种不同的“插入”方法根据乘法原理共有7200种不同的坐法排列组合问题II一、相临问题整体捆绑法 例17名学生站成一排,甲、乙必须站在一起有多
9、少不同排法?解:两个元素排在一起的问题可用“捆绑”法解决,先将甲乙二人看作一个元素与其他五人进行排列,并考虑甲乙二人的顺序,所以共有 种。捆绑法:要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也可以作排列.一般地: 个人站成一排,其中某 个人相邻,可用“捆绑”法解决,共有 种排法。练习:5个男生3个女生排成一排,3个女生要排在一起,有多少种不同的排法? 分析 此题涉及到的是排队问题,对于女生有特殊的限制,因此,女生是特殊元素,并且要求她们要相邻,因此可以将她们看成是一个元素来解决问题.解 因为女生要排在
10、一起,所以可以将3个女生看成是一个人,与5个男生作全排列,有 种排法,其中女生内部也有 种排法,根据乘法原理,共有 种不同的排法.二、不相临问题选空插入法 例2 7名学生站成一排,甲乙互不相邻有多少不同排法?解:甲、乙二人不相邻的排法一般应用“插空”法,所以甲、乙二人不相邻的排法总数应为: 种 . 插入法:对于某两个元素或者几个元素要求不相邻的问题,可以用插入法.即先排好没有限制条件的元素,然后将有限制条件的元素按要求插入排好元素的空档之中即可.若 个人站成一排,其中 个人不相邻,可用“插空”法解决,共有 种排法。练习: 学校组织老师学生一起看电影,同一排电影票12张。8个学生,4个老师,要求
11、老师在学生中间,且老师互不相邻,共有多少种不同的坐法?分析 此题涉及到的是不相邻问题,并且是对老师有特殊的要求,因此老师是特殊元素,在解决时就要特殊对待.所涉及问题是排列问题.解 先排学生共有种排法,然后把老师插入学生之间的空档,共有7个空档可插,选其中的4个空档,共有 种选法.根据乘法原理,共有的不同坐法为 种.三、复杂问题总体排除法或排异法有些问题直接法考虑比较难比较复杂,或分类不清或多种时,而它的反面往往比较简捷,可考虑用“排除法”,先求出它的反面,再从整体中排除.解决几何问题必须注意几何图形本身对其构成元素的限制。例3.(1996年全国高考题)正六边形的中心和顶点共7个点,以其中3个点
12、为顶点的三角形共有个.解:从7个点中取3个点的取法有 种,但其中正六边形的对角线所含的中心和顶点三点共线不能组成三角形,有3条,所以满足条件的三角形共有 332个.练习: 我们班里有43位同学,从中任抽5人,正、副班长、团支部书记至少有一人在内的抽法有多少种?分析 此题若是直接去考虑的话,就要将问题分成好几种情况,这样解题的话,容易造成各种情况遗漏或者重复的情况.而如果从此问题相反的方面去考虑的话,不但容易理解,而且在计算中也是非常的简便.这样就可以简化计算过程.解 43人中任抽5人的方法有 种,正副班长,团支部书记都不在内的抽法有 种,所以正副班长,团支部书记至少有1人在内的抽法有 种.四、
13、特殊元素优先考虑法 对于含有限定条件的排列组合应用题,可以考虑优先安排特殊位置,然后再考虑其他位置的安排。 例4 (1995年上海高考题) 1名老师和4名获奖学生排成一排照像留念,若老师不排在两端,则共有不同的排法种解:先考虑特殊元素(老师)的排法,因老师不排在两端,故可在中间三个位置上任选一个位置,有 种,而其余学生的排法有 种,所以共有 72种不同的排法.例5(2000年全国高考题)乒乓球队的10名队员中有3名主力队员,派5名队员参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有种.解:由于第一、三、五位置特殊,只能安排主力队员,有
14、 种排法,而其余7名队员选出2名安排在第二、四位置,有 种排法,所以不同的出场安排共有 252种.五、多元问题分类讨论法 对于元素多,选取情况多,可按要求进行分类讨论,最后总计。例6(2003年北京春招)某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为(A )A42B30C20D12解:增加的两个新节目,可分为相临与不相临两种情况:1.不相临:共有A62种;2.相临:共有A22A61种。故不同插法的种数为:A62 +A22A61=42 ,故选A。例7(2003年全国高考试题)如图,一个地区分为5个行政区域,现给地图着色,要求相邻地区不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有 种.(以数字作答) 解:区域与其他四个区域相邻,而其他每个区域都与三个区域相邻,因此,可以涂三种或四种颜色 用三种颜色着色有 =24种方法, 用四种颜色着色有 =48种方法,从而共有24+48=72种方法,应填72. 六、混合问题先选后排法 对于排列组合的混合应用题,可采取先选取元素,后进行排列的策略 例8(2002年北京高考)12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有( )A 种B 种C 种D 种解:本试题属于均分