2006年山西高考理科数学试卷真题及答案 .doc

上传人:m**** 文档编号:560268077 上传时间:2022-11-24 格式:DOC 页数:17 大小:388.50KB
返回 下载 相关 举报
2006年山西高考理科数学试卷真题及答案 .doc_第1页
第1页 / 共17页
2006年山西高考理科数学试卷真题及答案 .doc_第2页
第2页 / 共17页
2006年山西高考理科数学试卷真题及答案 .doc_第3页
第3页 / 共17页
2006年山西高考理科数学试卷真题及答案 .doc_第4页
第4页 / 共17页
2006年山西高考理科数学试卷真题及答案 .doc_第5页
第5页 / 共17页
点击查看更多>>
资源描述

《2006年山西高考理科数学试卷真题及答案 .doc》由会员分享,可在线阅读,更多相关《2006年山西高考理科数学试卷真题及答案 .doc(17页珍藏版)》请在金锄头文库上搜索。

1、2006年山西高考理科数学真题及答案一、选择题(共12小题,每小题5分,满分60分)1(5分)设集合M=x|x2x0,N=x|x|2,则()AMN=BMN=MCMN=MDMN=R2(5分)已知函数y=ex的图象与函数y=f(x)的图象关于直线y=x对称,则()Af(2x)=e2x(xR)Bf(2x)=ln2lnx(x0)Cf(2x)=2ex(xR)Df(2x)=lnx+ln2(x0)3(5分)双曲线mx2+y2=1的虚轴长是实轴长的2倍,则m=()AB4C4D4(5分)如果复数(m2+i)(1+mi)是实数,则实数m=()A1B1CD5(5分)函数的单调增区间为()AB(k,(k+1),kZC

2、D6(5分)ABC的内角A、B、C的对边分别为a、b、c,若a、b、c成等比数列,且c=2a,则cosB=()ABCD7(5分)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是()A16B20C24D328(5分)抛物线y=x2上的点到直线4x+3y8=0距离的最小值是()ABCD39(5分)设平面向量1、2、3的和1+2+3=0如果向量1、2、3,满足|i|=2|i|,且i顺时针旋转30后与i同向,其中i=1,2,3,则()A1+2+3=0B12+3=0C1+23=0D1+2+3=010(5分)设an是公差为正数的等差数列,若a1+a2+a3=15,a1a2a3=80

3、,则a11+a12+a13=()A120B105C90D7511(5分)用长度分别为2、3、4、5、6(单位:cm)的5根细木棒围成一个三角形(允许连接,但不允许折断),能够得到的三角形的最大面积为()ABCD20cm212(5分)设集合I=1,2,3,4,5选择I的两个非空子集A和B,要使B中最小的数大于A中最大的数,则不同的选择方法共有()A50种B49种C48种D47种二、填空题(共4小题,每小题4分,满分16分)13(4分)已知正四棱锥的体积为12,底面对角线长为,则侧面与底面所成的二面角等于14(4分)设z=2yx,式中变量x、y满足下列条件:,则z的最大值为15(4分)安排7位工作

4、人员在5月1日至5月7日值班,每人值班一天,其中甲、乙二人都不安排在5月1日和2日不同的安排方法共有 种(用数字作答)16(4分)设函数若f(x)+f(x)是奇函数,则=三、解答题(共6小题,满分74分)17(12分)ABC的三个内角为A、B、C,求当A为何值时,取得最大值,并求出这个最大值18(12分)A、B是治疗同一种疾病的两种药,用若干试验组进行对比试验每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗效若在一个试验组中,服用A有效的小白鼠的只数比服用B有效的多,就称该试验组为甲类组设每只小白鼠服用A有效的概率为,服用B有效的概率为()求一个试验组为甲类组的概率;()观

5、察3个试验组,用表示这3个试验组中甲类组的个数,求的分布列和数学期望19(12分)如图,l1、l2是互相垂直的异面直线,MN是它们的公垂线段点A、B在l1上,C在l2上,AM=MB=MN()证明ACNB;()若ACB=60,求NB与平面ABC所成角的余弦值20(12分)在平面直角坐标系xOy中,有一个以和为焦点、离心率为的椭圆,设椭圆在第一象限的部分为曲线C,动点P在C上,C在点P处的切线与x、y轴的交点分别为A、B,且向量求:()点M的轨迹方程;()的最小值21(14分)已知函数()设a0,讨论y=f(x)的单调性;()若对任意x(0,1)恒有f(x)1,求a的取值范围22(12分)设数列a

6、n的前n项的和,n=1,2,3,()求首项a1与通项an;()设,n=1,2,3,证明:2006年山西高考理科数学真题参考答案一、选择题(共12小题,每小题5分,满分60分)1(5分)设集合M=x|x2x0,N=x|x|2,则()AMN=BMN=MCMN=MDMN=R【分析】M、N分别是二次不等式和绝对值不等式的解集,分别解出再求交集合并集【解答】解:集合M=x|x2x0=x|0x1,N=x|x|2=x|2x2,MN=M,故选:B2(5分)已知函数y=ex的图象与函数y=f(x)的图象关于直线y=x对称,则()Af(2x)=e2x(xR)Bf(2x)=ln2lnx(x0)Cf(2x)=2ex(

7、xR)Df(2x)=lnx+ln2(x0)【分析】本题考查反函数的概念、互为反函数的函数图象的关系、求反函数的方法等相关知识和方法根据函数y=ex的图象与函数y=f(x)的图象关于直线y=x对称可知f(x)是y=ex的反函数,由此可得f(x)的解析式,进而获得f(2x)【解答】解:函数y=ex的图象与函数y=f(x)的图象关于直线y=x对称,所以f(x)是y=ex的反函数,即f(x)=lnx,f(2x)=ln2x=lnx+ln2(x0),选D3(5分)双曲线mx2+y2=1的虚轴长是实轴长的2倍,则m=()AB4C4D【分析】由双曲线mx2+y2=1的虚轴长是实轴长的2倍,可求出该双曲线的方程

8、,从而求出m的值【解答】解:双曲线mx2+y2=1的虚轴长是实轴长的2倍,m0,且双曲线方程为,m=,故选:A4(5分)如果复数(m2+i)(1+mi)是实数,则实数m=()A1B1CD【分析】注意到复数a+bi(aR,bR)为实数的充要条件是b=0【解答】解:复数(m2+i)(1+mi)=(m2m)+(1+m3)i是实数,1+m3=0,m=1,选B5(5分)函数的单调增区间为()AB(k,(k+1),kZCD【分析】先利用正切函数的单调性求出函数单调增时x+的范围i,进而求得x的范围【解答】解:函数的单调增区间满足,单调增区间为,故选C6(5分)ABC的内角A、B、C的对边分别为a、b、c,

9、若a、b、c成等比数列,且c=2a,则cosB=()ABCD【分析】根据等比数列的性质,可得b=a,将c、b与a的关系结合余弦定理分析可得答案【解答】解:ABC中,a、b、c成等比数列,则b2=ac,由c=2a,则b=a,=,故选B7(5分)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是()A16B20C24D32【分析】先求正四棱柱的底面边长,然后求其对角线,就是球的直径,再求其表面积【解答】解:正四棱柱高为4,体积为16,底面积为4,正方形边长为2,正四棱柱的对角线长即球的直径为2,球的半径为,球的表面积是24,故选C8(5分)抛物线y=x2上的点到直线4x+3y

10、8=0距离的最小值是()ABCD3【分析】设抛物线y=x2上一点为(m,m2),该点到直线4x+3y8=0的距离为,由此能够得到所求距离的最小值【解答】解:设抛物线y=x2上一点为(m,m2),该点到直线4x+3y8=0的距离为,分析可得,当m=时,取得最小值为,故选B9(5分)设平面向量1、2、3的和1+2+3=0如果向量1、2、3,满足|i|=2|i|,且i顺时针旋转30后与i同向,其中i=1,2,3,则()A1+2+3=0B12+3=0C1+23=0D1+2+3=0【分析】三个向量的和为零向量,在这三个向量前都乘以相同的系数,我们可以把系数提出公因式,括号中各项的和仍是题目已知中和为零向

11、量的三个向量,当三个向量都按相同的方向和角度旋转时,相对关系不变【解答】解:向量1、2、3的和1+2+3=0,向量1、2、3顺时针旋转30后与1、2、3同向,且|i|=2|i|,1+2+3=0,故选D10(5分)设an是公差为正数的等差数列,若a1+a2+a3=15,a1a2a3=80,则a11+a12+a13=()A120B105C90D75【分析】先由等差数列的性质求得a2,再由a1a2a3=80求得d即可【解答】解:an是公差为正数的等差数列,a1+a2+a3=15,a1a2a3=80,a2=5,a1a3=(5d)(5+d)=16,d=3,a12=a2+10d=35a11+a12+a13

12、=105故选B11(5分)用长度分别为2、3、4、5、6(单位:cm)的5根细木棒围成一个三角形(允许连接,但不允许折断),能够得到的三角形的最大面积为()ABCD20cm2【分析】设三角形的三边分别为a,b,c,令p=,则p=10海伦公式S=故排除C,D,由于等号成立的条件为10a=10b=10c,故“=”不成立,推测当三边长相等时面积最大,故考虑当a,b,c三边长最接近时面积最大,进而得到答案【解答】解:设三角形的三边分别为a,b,c,令p=,则p=10由海伦公式S=知S=203由于等号成立的条件为10a=10b=10c,故“=”不成立,S203排除C,D由以上不等式推测,当三边长相等时面

13、积最大,故考虑当a,b,c三边长最接近时面积最大,此时三边长为7,7,6,用2、5连接,3、4连接各为一边,第三边长为7组成三角形,此三角形面积最大,面积为,故选B12(5分)设集合I=1,2,3,4,5选择I的两个非空子集A和B,要使B中最小的数大于A中最大的数,则不同的选择方法共有()A50种B49种C48种D47种【分析】解法一,根据题意,按A、B的元素数目不同,分9种情况讨论,分别计算其选法种数,进而相加可得答案;解法二,根据题意,B中最小的数大于A中最大的数,则集合A、B中没有相同的元素,且都不是空集,按A、B中元素数目这和的情况,分4种情况讨论,分别计算其选法种数,进而相加可得答案【解答】解:解法一,若集合A、B中分别有一个元素,则选法种数有C52=10种;若集合A中有一个元素,集合B中有两个元素,则选法种数有C53=10种;若集合A中有一个元素,集合B中有三个元素,则选法种数有C54=5种;若集合A中有一个元素,集合B中有四个元素,则选法种数有C55=1种;若集合A中有两个元素,集合B中有一个元素,则选法种数有C53=10种;若集合A中有两个元素,集合B中有两个元素,则选法种数有C54=5种;若集合A中有两个元素,集合B中有三个元素,则选法种数有C55=1种;若集合A中有三个元素,集合B中有一个元素,则选法种数有C54=5种;若

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 中学教育 > 高考

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号