某钢厂冷轧板形控制系统设计说明.doc

上传人:M****1 文档编号:560235713 上传时间:2023-07-28 格式:DOC 页数:34 大小:1.06MB
返回 下载 相关 举报
某钢厂冷轧板形控制系统设计说明.doc_第1页
第1页 / 共34页
某钢厂冷轧板形控制系统设计说明.doc_第2页
第2页 / 共34页
某钢厂冷轧板形控制系统设计说明.doc_第3页
第3页 / 共34页
某钢厂冷轧板形控制系统设计说明.doc_第4页
第4页 / 共34页
某钢厂冷轧板形控制系统设计说明.doc_第5页
第5页 / 共34页
点击查看更多>>
资源描述

《某钢厂冷轧板形控制系统设计说明.doc》由会员分享,可在线阅读,更多相关《某钢厂冷轧板形控制系统设计说明.doc(34页珍藏版)》请在金锄头文库上搜索。

1、 目 录1板形定义、影响板形的因素和板形控制手段- 2 -1.1带钢断面形状表示方法- 2 -1.1.1凸度(CR)- 2 -1.1.2楔形(CT)- 3 -1.1.3边部减薄(E)- 3 -1.1.4局部高点- 3 -1.2坦度表示方法- 4 -1.2.1纤维相对长度差表示法- 4 -1.2.2波浪表示法- 5 -1.2.3常见板形错误与带钢延伸的关系- 6 -1.3影响板形的因素- 7 -1.3.1轧辊的弹性弯曲变形- 9 -1.3.2轧辊的热膨胀- 10 -1.3.3轧辊的磨损- 10 -1.3.4轧辊的弹性压扁- 11 -1.3.5轧辊的原始辊型- 11 -1.3.6轧辊的安装- 11

2、 -1.4控制板形的手段- 13 -21450冷连轧控制系统中的板形控制系统- 15 -2.1系统总览- 15 -2.2基本测量原理- 16 -2.3板形测量设备- 17 -2.3.1BFI测量辊- 17 -2.3.2PCM解码单元- 18 -2.4实现、接口与通讯方式- 19 -2.5测量值处理- 20 -2.5.1测量值处理(轧制模式)- 20 -2.5.2测量值处理(标定模式)- 21 -2.6板形控制- 21 -2.6.1执行机构- 21 -2.6.2板形分析- 22 -2.7分段冷却控制介绍- 23 -2.8调试中所需要进行工作- 24 -冷轧板形控制系统介绍现在对冷轧带钢产品质量的

3、要求越来越高,继纵向厚差由于使用AGC获得比较圆满的解决之后,横向厚差及板形的控制则成为重点的研究课题。本文主要分为两个部分,第一部分介绍了板形的定义、影响板形的因素和板形控制的手段,第二部分介绍了1450冷连轧控制系统中的板形控制系统和调试工作中所做的工作。1 板形定义、影响板形的因素和板形控制手段板形问题包括板带的横向厚差及板带的平直度两个方面,但由于这二者又紧密相关,故把他们总称为板形问题。板形实际上包含带钢横截面几何形状和在自然状态下带材的平坦度两个方面,因此要定量描述板形就涉及到这两个方面的多项指标,包括:凸度、楔形、边部减薄、局部高点和和平坦度。 1.1 带钢断面形状表示方法1.1

4、.1 凸度(CR)凸度是描述带材横截面形状的一项主要指标。凸度定义为在宽度中点处厚度与两侧边部标志点平均厚度之差 CRhc-1/2her+hel式中her和hel为右部及左部的标志点厚度。所谓标志点是指不包括边部减薄部分的边部点,一般取离实际边部40mm左右处的点。hc为带材宽度方向中心点的厚度。1.1.2 楔形(CT)楔形:即左右标志点厚度之差CTherhel1.1.3 边部减薄(E)边部减薄:即带钢与轧辊接触处的轧辊压扁在板边由于过渡区而造成的带钢边部减薄。Er= her-hErEL= heL-hEI式中hER和hEl为带材实际右边部和左边部的厚度(上面各式中右部一般指传动侧,左部为操作侧

5、)。1.1.4 局部高点局部高点是指横截面上局部范围内的厚度凸起。对于宽冷轧带钢,严格说,凸度可分为二次凸度CR2和四次凸度CR4(甚至还包括更高次的)。从带宽中心点到两侧标志点范围内如测取多个点的厚度值,并用这些点的厚度值拟合出一条曲线,往往是如下形式 h()=b0+b1+b22+b44+b0 -b4为系数由此可定义 CR1=2b1 CR2=(b2+b4) CR4=b4/4其中CR1实际上表现了带钢的楔形,CR2为二次凸度,亦即为前面所说的凸度,CR4为四次凸度 图125 局部高点1.2 坦度表示方法平坦度指轧制后在不存在张力的状态下(自然状态)带材的平坦性,由于对冷轧成品使用多种测量方法,

6、平坦度可有多种表示方法。平坦度不良的主要表现为带钢(在自然状态下)的翘曲。翘曲是由于带宽方向上各处延伸不均造成内部残余应力分布。冷轧带钢时,对带钢前后将施加较大张力,因此轧制时从表面上一般不易看出翘曲、起浪等现象,但当带钢无张力,自然地放在平台上,常可看到带钢地翘曲(起浪、皱纹或局部凹凸)。冷轧带钢地翘曲比热轧带钢复杂。不仅有侧弯、边浪、中浪,而且存在1/4处的波浪以及复合浪,这是由于内应力的不同分布造成。1.2.1 纤维相对长度差表示法轧后带钢翘曲是由于边部或中部较大的延伸而产生严重边浪或中浪。一个比较简单的方法就是取宽度方向上不同点的相对长度差L/L来表示平坦度。其中L是所取基准点的轧后长

7、度,L是其它点相对基准点的轧后长度差,相对长度差也称为板形指数w。wL/L这个值是非常小的,为了更好的表达和操作,我们引入了I单位。1 I-unit = 10-5 * DL/L。一般定义I为负时是边浪,I为正时是中浪。1.2.2 波浪表示法在翘曲的钢板上测量相对长度来求出长度差很不方便,所以采用了更为直观的方法,即以翘曲波形来表示平坦度,称之为波浪度dw。将带材切取一段置于平台之上,如将其最短纵条视为一直线,最长纵条视为一正弦波,则如图126所示,可将带钢的波浪度表示为 dw(Rw/Lw)100式中Rw波高; Lw波长。波形表示法dw为波浪度,也叫陡度(steepness)。这种方法直观、易于

8、测量,所以许多工厂都采用这种方法。设在波形表示法图中与长度为Lw的直线部分相对应的曲线部分长为Lw+Lw,并认为曲线按正弦规律变化,则可利用线积分求出曲线部分与直线部分的相对长度差。因设波形曲线为正弦波,设:Hw(Rw/2)sin(2y/Lw)故与Lw对应的曲线长度为: Lw+Lw因此,曲线部分和直线部分的相对长度差为 wLw/ Lw =(Rw/2 Lw)2=(2/4)d2w10-5因此波浪度可以作为相对长度差的代替量。只要测出带钢波浪度,就可以求出相对长度差。1.2.3 常见板形错误与带钢延伸的关系下图显示了典型的几种板形表现形式与板宽方向上延伸率的对应关系。但是,实际上在实际轧制完的带钢上

9、,这些板形错误会同时出现,带钢表现出来的是这几种板形的综合表现。下图演示了其中的一种情况。1.3 影响板形的因素通常冷轧带钢产品不允许有明显的浪形与瓢曲等板形缺陷存在,因为板形不良将直接影响用户的使用。如带钢在长度方向在水平面上向一边弯曲,会影响用户放样下料、自动进料或材料的利用率,更为严重的是切不成材,无法使用。要不就是大材小用或积压待处理。因此,板形是冷轧带钢产品标准中的保证项目之一。根据冷轧带钢产品的规格、用途等不同,在板形质量方面的要求程度亦各有异。我们平时所说的板形或有关标准中所规定的板形要求一般是指“视在板形”,亦即指在轧制过程中或轧后即可用肉眼或测量器具辨别的板形。而事实上,操作

10、不当会产生一种在轧制后不能立即发现往往要在后部加工工序中才会暴露的板形,即“潜在板形”。例如,有时从轧机出来的带钢看起来并无浪形,但一旦纵剪,即会出现旁弯或者浪形。因此,在生产中要将视在板形都控制在所要求的范围内。众所周知,带钢的横向厚度差取决于轧辊在轧制时辊缝的实际大小及形状,带钢的板形则取决于与此有关的各部分的延伸的均匀程度。因此,横向厚度和板形是两个不同的概念。但无论是横向厚度差方面的缺陷或板形方面的缺陷,其根源都在于带钢在轧制过程中的不均匀变形(不均匀 的压下与不均匀的延伸),实质是带钢内部残余应力的分布。可见,横向厚度差与板形有着内在的关系。因此,通过调整辊缝形状可以达到减小带钢的横

11、向厚度差和改善板形质量的目的。研究证明,在冷轧过程中,由于带钢的宽展很小几乎可以忽略不计。因此,压下变形基本都转为延伸,特别在待张力轧制的情况下,可以相当准确的认为压下系数就等于延伸系数。如此,带钢在轧制过程中由于某种原因而引起的各部分的压下不均将表现为这部分的延伸不均,板形缺陷的出现就是来源于带钢宽度方向上各部分的延伸不均,延伸较大的部分被迫受压,而延伸较小者则被迫受拉。通常拉伸作用不会引起板形问题,但是当压缩力超过一定的临界值时,该部分带钢在压缩力的作用下将产生不同形式的屈曲。事实上,带钢在轧制时在尚未进入轧辊之前的部分其前进速度沿宽度方向是均匀分布的,而刚从辊缝出来的带钢速度沿宽度方向上

12、的分布是不均匀的。为了区别于轧制时带钢的变形,通常把这种离开辊缝以后由于纵向延伸不均而引起的附加变形称为“二次变形”,带钢“二次变形”的结果导致带钢板形的不良。如果认为“二次变形”等于零是确保带钢完全平直的理想条件,就应设法使带钢各点延伸一致,即意味着带钢断面上各点的压下率相同。当带钢在轧制前就已存在着一定的断面厚度差时,则依照带钢断面上各点的压下率相同显然还不能保证纵向各点延伸完全一致。如果料中部厚于边部的情况下,为了保证均匀延伸,就必须使中部的压下率大于边部的压下率,这样才有可能使中部与边部的延伸差等于零。在实际生产中,经常会碰到这样一个情况,即有时轧出带钢板形良好但厚度超出偏差,为了保证

13、带钢横断面厚度偏差值,板形方面的要求又可能满足不了,造成这种局面的根本原因就是原料断面厚度的不均匀。如前所述,带钢横向各部位延伸一致的标准是各点的压下率相同。然而,只要轧前带钢的各点厚度差不等于零,所轧出的带钢厚度差在保证板形良好的条件下是不可能等于零的。而且,在延伸相同的条件下,轧前厚度差越大,那么在保证板形良好的情况下所轧出的带钢横向厚差也越大。换句话说,只要轧前厚度差不等于零而想使轧出的带钢厚度差等于零,就只有破坏均匀延伸条件,从而也破坏了板形的平直。因此,为了尽可能兼顾板形与横向厚差的要求,重要的问题在于努力保证冷轧带钢原料的厚度比较均匀,这点已为冷轧带钢生产实践所证明。上所述,影响板

14、形不良的原因在于带钢在轧制过程中沿宽度方向上各处的不均匀延伸。板形缺陷的产生,除了原料的厚度不均匀等因素外主要是轧辊的辊缝变化。因此,板形的控制基本上可以说是辊形的控制,而辊形的控制系指对实际轧制时工作辊缝形状的控制。众所周知,带钢在冷轧过程中,其横断面上各点的厚度取决于轧辊在轧制时的实际辊缝;其平直度则取决于各部分延伸的均匀程度,这同样也取决于轧制时的实际辊缝的形状与大小。由于轧辊的弯曲而沿带钢宽度方向辊缝发生变化,使轧出的带钢沿宽度方向变的不均匀,这就导致带钢板形的不良,而轧辊的弹性变形、辊温的变化及轧辊的磨损乃是使轧辊弯曲、其实际工作辊缝发生变化的主要因素。特别是轧辊的磨损,每时每刻都在

15、破坏着正常的辊形,使辊缝发生不均匀的变化。归结起来,影响辊缝形状的因素主要有以下几点:1.3.1 轧辊的弹性弯曲变形从变形工具方面来看,如果轧制用的轧辊加工成严格的圆柱形,那么在不过钢时,辊缝显然是平行的。在轧制带钢时,由于轧制压力的作用,轧辊将产生弹性变形(如下图)。这些弹性变形沿辊身长度方向是不均匀分布的,结果使轧制时的实际辊缝变成中间尺寸大于边部尺寸的鼓形辊缝,所轧出的带钢断面形状自然也是鼓形的。即带钢中部产生凸度,带钢边缘减薄。通常,轧制压力越大,轧辊的弹性弯曲变形越大;轧辊直径越大,刚性就越好,则轧辊的弹性弯曲变形越小。1.3.2 轧辊的热膨胀冷轧生产过程中,带钢的变形主要是压下与延伸变形,厚度方面的压下几乎全部变成纵向的延伸。在变形过程中,带钢将产生大量的变形热,带

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 商业/管理/HR > 商业合同/协议

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号