电子探针分析方法 结构与工作原理

上传人:cn****1 文档编号:559864474 上传时间:2023-09-19 格式:DOC 页数:17 大小:387KB
返回 下载 相关 举报
电子探针分析方法 结构与工作原理_第1页
第1页 / 共17页
电子探针分析方法 结构与工作原理_第2页
第2页 / 共17页
电子探针分析方法 结构与工作原理_第3页
第3页 / 共17页
电子探针分析方法 结构与工作原理_第4页
第4页 / 共17页
电子探针分析方法 结构与工作原理_第5页
第5页 / 共17页
点击查看更多>>
资源描述

《电子探针分析方法 结构与工作原理》由会员分享,可在线阅读,更多相关《电子探针分析方法 结构与工作原理(17页珍藏版)》请在金锄头文库上搜索。

1、电子探针电子探针所谓电子探针是指用聚焦很细的电子束照射要检测的样品表面,用X射线分光谱仪测量其产生的特征X射线的波长和强度。由于电子束照射面积很小,因而相应的X射线特征谱线将反映出该微小区域内的元素种类及其含量。显然,如果将电子放大成像与X射线衍射分析结合起来,就能将所测微区的形状和物相分析对应起来(微区成分分析),这是电子探针的最大优点。电子探针分析方法子探针分析方法利用电子探针分析方法可以探知材料样品的化学组成以及各元素的重量百分数。分析前要根据试验目的制备样品,样品表面要清洁。用波谱仪分析样品时要求样品平整,否则会降低测得的射线强度。一 定性分析1点分析用于测定样品上某个指定点的化学成分

2、.下图是用能谱仪得到的某钢定点分析结果。能谱仪中的多道分析器可使样品中所有元素的特征射线信号同时检测和显示.不像波谱仪那样要做全部谱扫描,甚至还要更换分光晶体。2 线分析用于测定某种元素沿给定直线分布的情况。方法是将X射线谱仪(波谱仪或能谱仪)固定在所要测量的某元素特征射线信号(波长或能量)的位置上,把电子束沿着指定的方向做直线轨迹扫描,便可得到该元素沿直线特征X射线强度的变化,从而反映了该元素沿直线的浓度分布情况。改变谱仪的位置,便可得到另一元素的X射线强度分布。下图为50CrNMo钢中夹杂l23的线分析像。可见,在Al23夹杂存在的地方,Al的X射线峰较强。3 面分析用于测定某种元素的面分

3、布情况。方法是将射线谱仪固定在所要测量的某元素特征X射线信号的位置上,电子束在样品表面做光栅扫描,此时在荧光屏上便可看到该元素的面分布图像。显像管的亮度由试样给出的射线强度调制。图像中的亮区表示这种元素的含量较高.下图为4rNi3o钢中夹杂物的能谱面分析图像。(a)S的面分析像 (b) M的面分析像二 定量分析定量分析时,先测得试样中元素的特征射线强度IY,再在同一条件下测出已知纯元素Y的标准试样特征X射线强度O。然后两者分别扣除背底和计数器死时间对所测值的影响,得到相应的强度值IY和IO,两者相除得到射线强度之比K= Y / IO。 直接将测得的强度比Y当作试样中元素Y的重量浓度,其结果还有

4、很大误差,通常还需进行三种效应的修正。即原子序数效应的修正,吸收效应修正,荧光效应修正。经过修正,误差可控制在2%以内。三 应用()测定合金中的相成分合金中的析出相往往很小,有时几种相同时存在,因而用一般方法鉴别十分困难。例如不锈钢在1173 以上长期加热后析出很脆的相和X相,其外形相似,金相法难以区别。但用电子探针测定Cr和Mo的成分,可以从Cr/Mo的比值来区分相(Cr/Mo为2。6-4.4)和X相(C/Mo为1。62.15)。(2)测定夹杂物大多数非金属夹杂物对性能起不良的影响.用电子探针和扫描电镜附件能很好地测出它们的成分,大小,形状和分布,为我们选择合理的生产工艺提供了依据。(3)测

5、定元素的偏析晶界与晶内,树枝晶中的枝干和枝间,母材与焊缝常造成元素的富集或贫乏现象,这种偏析有时对材料的性能带来极大的危害,用电子探针通常很容易分析出各种元素偏析的情况.(4)测定元素在氧化层中的分布表面氧化时金属材料经常发生的现象.利用二次电子像和特征X射线扫描像,可把组织形貌和各种元素分布有机结合起来分析,也可用线分析方法,清楚地显示出元素从氧化层表面至内部基体的分布情况。如果把电子探针成分分析和X射线衍射像分析结合起来,这样能把氧化层中各种相的形貌和结构对应起来。而用透射电镜难于进行这方面的研究,因为氧化层场疏松难以制成金属薄膜。用类似的方法还可测定元素在金属渗层中的分布,为工艺的选择和

6、渗层组织的分析提供有益的信息。131 电子探针仪的结构与工作原理电子探针的功能主要是进行微区成分分析。其原理是用细聚焦电子束入射样品表面,激发出样品元素的特征x射线。 由莫塞莱定律可知,各种元素的特征X射线都具有各自确定的波长,并满足以下关系: 通过探测特征x射线的波长(或特征能量)即可知道样品中所含元素的种类,这就是电子探针定性分析的依据。而将被测样品与标准样品中元素Y的衍射强度进行对比,就能进行电子探针的定量分析.图13-1为电子探针仪的结构示意图.由图可知,电子探针的镜筒及样品室和扫描电镜并无本质上的差别,因此要使一台仪器兼有形貌分析和成分分析两个方面的功能,往往把扫描电子显微镜和电子探

7、针组合在一起.图13- 电子探针仪的结构示意图电子探针的信号检测系统是X射线谱仪,用来测定特征波长的谱仪叫做波长分散谱仪(WD)或波谱仪。用来测定x射线特征能量的谱仪叫做能量分散谱仪(EDS)或能谱仪。一、波长分散谱仪(一)工作原理若在样品上方水平放置一块具有适当晶面间距的晶体(分光晶体),入射X射线的波长、入射角和晶面间距三者符合布拉格方程2sinq=l时,这个特征波长的x射线就会发生强烈衍射,见图32。不同波长的x射线以不同的入射方向入射时会产生各自的衍射束,若面向衍射束安置一个接收器,便可记录下不同波长的x射线,从而使样品作用体积内不同波长的X射线分散并展示出来。图3-2 分光晶体二、能

8、量分散谱仪 (一)工作原理每种元素具有自己特定的x射线特征波长,而特征波长的大小则取决于能级跃迁过程中释放出的特征能量DE。能谱仪就是利用不同元素x射线光子特征能量不同这一特点来进行成分分析的。图3 采用锂漂移硅检测器能量谱仪的方框图图1-3为采用锂漂移硅检测器能量谱仪的方框图.射线光子由锂漂移硅S(Li)检测器收集,当光子进入检测器后,在Si(Li)晶体内激发出一定数目的电子空穴对。产生一个空穴对的最低平均能量是一定的,因此由一个x射线光子造成的电子-空穴对的数目为, 。入射X射线光子的能量越高,就越大。利用加在晶体两端的偏压收集电子空穴对,经前置放大器转换成电流脉冲,电流脉冲的高度取决于N

9、的大小,电流脉冲经主放大器转换成电压脉冲进入多道脉冲高度分析器。脉冲高度分析器按高度把脉冲分类并进行计数,这样就可以描出一张特征x射线按能量大小分布的图谱.(二)能谱仪成分分析的特点和波谱仪相比,能谱仪具有下列几方面的优点.(1)能谱仪探测x射线的效率高。Si(Li)晶体对x射线的检测率极高,能谱仪的灵敏度比波谱仪高一个数量级。(2)能谱仪可在同一时间内对分析点内所有元素x射线光子的能量进行测定和计数,在几分钟内可得到定性分析结果,而波谱仪只能逐个测量每种元素的特征波长。(3)能谱仪的结构比波谱仪简单,没有机械传动部分,因此稳定性和重复性都很好。()能谱仪不必聚焦,因此对样品表面没有特殊要求,

10、适合于粗糙表面的分析工作。但是,能谱仪仍有它自己的不足之处。(1)能谱仪的分辨率比波谱仪低.在一般情况下,S(L)检测器的能量分辨率约为60e,而波谱仪的能量分辨率可达510e.(2)能谱仪中因Si(L)检测器的铍窗口限制了超轻元素射线的测量,因此它只能分析原子序数大于1的元素,而波谱仪可测定原子序数从4到92之间的所有元素。(3)能谱仪的Si(L)探头必须保持在低温状态,必须用液氮冷却。电子探针的工作原理及构造电子探针的分析原理及构造一 工作原理分析由莫塞莱定律可知,各种元素的特征X射线都具有各自确定的波长,并满足以下关系:通过探测这些不同波长的X射线来确定样品中所含有的元素,这就是电子探针

11、定性分析的依据。而将被测样品与标准样品中元素Y的衍射强度进行对比,即:就能进行电子探针的定量分析。 当然利用电子束激发的射线进行元素分析,其前提是入射电子束的能量必须大于某元素原子的内层电子临界电离激发能。二 构造电子探针主要由电子光学系统(镜筒),X射线谱仪和信息记录显示系统组成。电子探针和扫描电镜在电子光学系统的构造基本相同,它们常常组合成单一的仪器. 电子光学系统该系统为电子探针分析提供具有足够高的入射能量,足够大的束流和在样品表面轰击殿处束斑直径近可能小的电子束,作为射线的激发源.为此,一般也采用钨丝热发射电子枪和23个聚光镜的结构. 为了提高X射线的信号强度,电子探针必须采用较扫描电

12、镜更高的入射电子束流(在0-9-107范围),常用的加速电压为0K,束斑直径约为.5.电子探针在镜筒部分与扫描电镜明显不同之处是由光学显微镜.它的作用是选择和确定分析点。其方法是,先利用能发出荧光的材料(如rO2)置于电子束轰击下,这是就能观察到电子束轰击点的位置,通过样品移动装置把它调到光学显微镜目镜十字线交叉点上,这样就能保证电子束正好轰击在分析点上,同时也保证了分析点处于射线分光谱仪的正确位置上.在电子探针上大多使用的光学显微镜是同轴反射式物镜,其优点是光学观察和射线分析可同时进行。放大倍数为0050倍。 2 X射线谱仪电子束轰击样品表面将产生特征射线,不同的元素有不同的X射线特征波长和

13、能量。通过鉴别其特征波长或特征能量就可以确定所分析的元素。利用特征波长来确定元素的仪器叫做波长色散谱仪(波谱仪),利用特征能量的就称为能量色散谱仪(能谱仪)。(1)波谱仪然,波谱仪的关键在于怎样实现将未知的特征谱线与已知元素联系起来?为此设想有一种晶面间距为d的特定晶体(我们称为分光晶体),当不同特征波长的X射线照射其上时,如果满足布拉格条件(2dsin=)将产生衍射。显然,对于任意一个给定的入射角仅有一个确定的波长满足衍射条件。这样我们可以事先建立一系列角与相应元素的对应关系,当某个由电子束激发的X特征射线照射到分光晶体上时,我们可在与入射方向交成2角的相应方向上接收到该波长的X射线信号,同

14、时也就测出了对应的化学元素.只要令探测器连续进行角的扫描,即可在整个元素范围内实现连续测量.平面分光晶体虽然可将各种不同波长的X射线分光展开,但由于只有一点产生的X衍射线强度很低,探测器接受到的信号将很弱.为此最好采用射线聚焦的办法,即将多点衍射线汇聚起来以增大强度。由于X射线无法通过透镜聚焦,故而只能采用弯曲晶体聚焦的办法来实现。 弯曲晶体的聚焦条件要求射线源(样品表面被分析点),分光晶体和X射线探测器三者处于同一圆周上(聚焦圆)。晶体被弯曲到其衍射晶面的曲率半径等于,并将表面研磨成曲率半径与聚焦圆相符。此时,由于衍射晶体的曲率中心总是位于聚焦圆的圆周上(如M点),由点光源发射出的呈发散状态

15、的复合布拉格条件的同一波长的射线,经C处的分光晶体反射后聚焦与点。如果将检测器的接收窗口狭缝放在D点,即可接受到全部晶体表面强烈衍射的单一波长X射线。 下表列出了波谱仪常用的分光晶体的基本参数和可测范围.由分光晶体所分散的单一波长X射线被X射线检测器接受,常用的检测器一般是正比计数器。当某一射线光子进入计数管后,管内气体电离,并在电场作用下产生电脉冲信号。下图示出了电子探针中X射线记录和显示装置方框图。可以看出,从计数器输出的电信号要经过前置放大器和主放大器,放大成0V左右的电压脉冲信号,这个信号再送到脉冲高度分析器。(2)能谱仪来自样品的X光子通过铍窗口进入锂漂移硅固态检测器.每个X光子能量被硅晶体吸收将在晶体内产生电子空穴对。不同能量的X光子将产生不同的电子空穴对数。例如,的K辐射可产生6个电子空穴对,而C为10.知道了电子空穴对数就可以求出相应的电荷量以及在固定电容(1F)上的电压脉冲。例如对F的来说,V0。7mV,对C的K,04V。可见,锂漂移硅固态检测器的作用是将X射线转换成电信号,产生电脉冲。这个很小的电压脉冲通过高信噪比的场效应管前置放大器和主放大器的两次放大产生足够强度的电压脉冲。放大后的信号被送入多道脉冲高度分析

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 高等教育 > 其它相关文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号