LTE TDD与LTE FDD技术简介和比较.doc

上传人:公**** 文档编号:559771561 上传时间:2023-02-04 格式:DOC 页数:7 大小:81.01KB
返回 下载 相关 举报
LTE TDD与LTE FDD技术简介和比较.doc_第1页
第1页 / 共7页
LTE TDD与LTE FDD技术简介和比较.doc_第2页
第2页 / 共7页
LTE TDD与LTE FDD技术简介和比较.doc_第3页
第3页 / 共7页
LTE TDD与LTE FDD技术简介和比较.doc_第4页
第4页 / 共7页
LTE TDD与LTE FDD技术简介和比较.doc_第5页
第5页 / 共7页
点击查看更多>>
资源描述

《LTE TDD与LTE FDD技术简介和比较.doc》由会员分享,可在线阅读,更多相关《LTE TDD与LTE FDD技术简介和比较.doc(7页珍藏版)》请在金锄头文库上搜索。

1、LTE TDD与LTE FDD技术简介和比较标签: 频分双工(FDD) 时分双工(TDD) LTE 摘要:UTRA 的长期演进(Long Term Evolution ,LTE) 技术存在LTE FDD和LTE TDD两大阵营,本文在比较分析TDD和FDD技术特点的基础上,对LTE TDD(即TD-LTE)的特有技术进行了总结,并结合中国移动现有的网络部署和TDD频段资源情况,对LTE TDD和LTE FDD的应用前景进行了初步分析。1、引言随着移动通信技术的蓬勃发展,无线通信系统呈现出移动化、宽带化和IP 化的趋势,移动通信市场的竞争也日趋激烈。为应对来自WiMAX ,Wi-Fi 等传统和新

2、兴无线宽带接入技术的挑战,提高3G在宽带无线接入市场的竞争力,3GPP 开展UTRA长期演进(Long Term Evolution ,LTE) 技术的研究,以实现3G技术向B3G和4G的平滑过渡。LTE的改进目标是实现更高的数据速率、更短的时延、更低的成本,更高的系统容量以及改进的覆盖范围。LTE系统同时定义了频分双工(Frequency Division Duplexing, FDD) 和时分双工(Time Division Duplexing, TDD) 两种方式,但由于无线技术的差异、使用频段的不同以及各个厂家的利益等因素,LTE FDD支持阵营更加强大,标准化与产业发展都领先于LTE

3、 TDD。2007年11月,3GPP RAN1会议通过了27家公司联署的LTE TDD融合帧结构的建议,统一了LTE TDD的两种帧结构。融合后的LTE TDD帧结构是以TD-SCDMA的帧结构为基础的,这就为TD-SCDMA成功演进到LTE乃至4G标准奠定了基础。TDD帧结构的融合使更多的厂商参与到TDD的标准化进程中,LTE TDD技术受到了广泛的重视,其产业化进程也有了显著的发展。本文在比较分析TDD和FDD技术特点的基础上,总结了TD-LTE系统的特有技术,并结合中国移动现有的网络部署和TDD频段资源情况,对LTE TDD和LTE FDD的应用前景进行了分析。2、FDD与TDD工作原理

4、频分双工(FDD) 和时分双工(TDD) 是两种不同的双工方式。如图1所示,FDD是在分离的两个对称频率信道上进行接收和发送,用保护频段来分离接收和发送信道。FDD必须采用成对的频率,依靠频率来区分上下行链路,其单方向的资源在时间上是连续的。FDD在支持对称业务时,能充分利用上下行的频谱,但在支持非对称业务时,频谱利用率将大大降低。TDD用时间来分离接收和发送信道。在TDD 方式的移动通信系统中, 接收和发送使用同一频率载波的不同时隙作为信道的承载, 其单方向的资源在时间上是不连续的,时间资源在两个方向上进行了分配。某个时间段由基站发送信号给移动台,另外的时间由移动台发送信号给基站,基站和移动

5、台之间必须协同一致才能顺利工作。图1:FDD和TDD的工作原理TDD 双工方式的工作特点使TDD具有如下优势: (1)能够灵活配置频率,使用FDD 系统不易使用的零散频段;(2)可以通过调整上下行时隙转换点,提高下行时隙比例,能够很好的支持非对称业务;(3)具有上下行信道一致性,基站的接收和发送可以共用部分射频单元,降低了设备成本;(4)接收上下行数据时,不需要收发隔离器,只需要一个开关即可,降低了设备的复杂度;(5)具有上下行信道互惠性,能够更好的采用传输预处理技术,如预RAKE 技术、联合传输(JT)技术、智能天线技术等, 能有效地降低移动终端的处理复杂性。但是,TDD双工方式相较于FDD

6、,也存在明显的不足:(1)由于TDD方式的时间资源分别分给了上行和下行,因此TDD方式的发射时间大约只有FDD的一半,如果TDD要发送和FDD同样多的数据,就要增大TDD的发送功率;(2)TDD系统上行受限,因此TDD基站的覆盖范围明显小于FDD基站;(3)TDD系统收发信道同频,无法进行干扰隔离,系统内和系统间存在干扰;(4)为了避免与其他无线系统之间的干扰,TDD需要预留较大的保护带,影响了整体频谱利用效率。3、TD-LTE系统特有技术LTE系统同时定义了频分双工(FDD) 和时分双工(TDD) 两种双工方式,并分别设计了FDD和TDD的帧结构1。FDD模式下,10ms的无线帧被分为10个

7、子帧,每个子帧包含两个时隙,每时隙长0.5ms。TDD模式下,每个10ms无线帧包括2个长度为5ms的半帧,每个半帧由4个数据子帧和1个特殊子帧组成,如图2所示。特殊子帧包括3个特殊时隙:DwPTS,GP和UpPTS,总长度为1ms。DwPTS和UpPTS的长度可配置,DwPTS的长度为312个OFDM符号,UpPTS的长度为12个OFDM符号,相应的GP长度为110个OFDM符号。LTE支持5ms和10ms上下行切换点。对于5ms上下行切换周期,子帧2和7总是用作上行。对于10ms上下行切换周期,每个半帧都有DwPTS;只在第1个半帧内有GP和UpPTS,第2个半帧的DwPTS长度为1ms。

8、UpPTS和子帧2用作上行,子帧7和9用作下行。图2:LTE TDD帧结构由于TDD帧结构与FDD帧结构不同,TD-LTE系统具有一些特有技术。(1)上下行配比LTE TDD中支持不同的上下行时间配比,上下行时间比不总是“1:1”(见表1),可以根据不同的业务类型,调整上下行时间配比,以满足上下行非对称的业务需求。表1:不同帧周期的上下行配比(2)特殊时隙的应用为了节省网络开销,TD-LTE允许利用特殊时隙DwPTS和UpPTS传输系统控制信息。LTE FDD中用普通数据子帧传输上行sounding导频,而TDD系统中,上行sounding导频可以在UpPTS上发送。另外,DwPTS也可用于传

9、输PCFICH、PDCCH、PHICH、PDSCH和P-SCH等控制信道和控制信息。其中,DwPTS时隙中下行控制信道的最大长度为两个符号,且主同步信道固定位于DwPTS的第三个符号。(3)多子帧调度/反馈和FDD不同,TDD系统不总是存在1:1的上下行比例。当下行多于上行时,存在一个上行子帧反馈多个下行子帧,TD-LTE提出的解决方案有:multi-ACK/NAK,ACK/NAK捆绑(bundling)等。当上行子帧多于下行子帧时,存在一个下行子帧调度多个上行子帧(多子帧调度)的情况。(4)同步信号设计除了TDD固有的特性之外(上下行转换、特殊时隙等),TDD帧结构与FDD帧结构的主要区别在

10、于同步信号的设计。LTE 同步信号的周期是5ms,分为主同步信号(PSS)和辅同步信号(SSS)。LTE TDD和FDD帧结构中,同步信号的位置/相对位置不同,如图3所示。在TDD帧结构中,PSS位于DwPTS的第三个符号,SSS位于5ms第一个子帧的最后一个符号;在FDD帧结构中,主同步信号和辅同步信号位于5ms第一个子帧内前一个时隙的最后两个符号。利用主、辅同步信号相对位置的不同,终端可以在小区搜索的初始阶段识别系统是TDD还是FDD。图3:FDD和TDD的同步信号设计(5)HARQ的设计LTE FDD 系统中,HARQ的RTT(Round Trip Time)固定为8ms,且ACK/NA

11、CK位置固定,如图4所示。TD-LTE系统中HARQ的设计原理与LTE FDD相同,但是实现过程却比LTE FDD复杂,由于TDD上下行链路在时间上是不连续的,UE发送ACK/NACK的位置不固定,而且同一种上下行配置的HARQ的RTT长度都有可能不一样,这样增加了信令交互的过程和设备的复杂度。如图4所示,LTE FDD系统中,UE发送数据后,经过3ms的处理时间,系统发送ACK/NACK,UE再经过3ms的处理时间确认,此后,一个完整的HARQ处理过程结束,整个过程耗费8ms。在LTE TDD系统中,UE发送数据,3ms处理时间后,系统本来应该发送ACK/NACK,但是经过3ms处理时间的时

12、隙为上行,必须等到下行才能发送ACK/NACK。系统发送ACK/NACK后,UE再经过3ms处理时间确认,整个HARQ处理过程耗费11ms。类似的道理,UE如果在第2个时隙发送数据,同样,系统必须等到DL时隙时才能发送ACK/NACK,此时,HARQ的一个处理过程耗费10ms。可见,LTE TDD系统HARQ的过程复杂,处理时间长度不固定,发送ACK/NACK的时隙也不固定,给系统的设计增加了难度。图4:FDD和TDD 的HARQ 设计4、LTE TDD与LTE FDD的比较LTE TDD在帧结构、物理层技术、无线资源配置等方面具有自己独特的技术特点,与LTE FDD相比,具有特有的优势,但也

13、存在一些不足。4.1、LTE TDD的优势(1)频谱配置频段资源是无线通信中最宝贵的资源,随着移动通信的发展,多媒体业务对于频谱的需求日益增加。现有的通信系统GSM900和GSM1800均采用FDD双工方式,FDD双工方式占用了大量的频段资源,同时,一些零散频谱资源由于FDD不能使用而闲置,造成了频谱浪费。由于LTE TDD系统无需成对的频率, 可以方便的配置在LTE FDD 系统所不易使用的零散频段上, 具有一定的频谱灵活性,能有效的提高频谱利用率。另外,中国已经为TDD 划分了155 MHz 的频段(如图5所示) ,为LTE TDD的应用创造了条件。因此,在频段资源方面,LTE TDD系统

14、和LTE FDD系统具有更大的优势。中国移动可以针对不同的频段资源,分别部署LTE TDD系统和LTE FDD系统,充分利用频谱资源。 图5:中国为TDD划分的频段(2)支持非对称业务在第三代移动通信系统以及未来的移动通信系统中,除了提供语音业务之外,数据和多媒体业务将成为主要内容,且上网、文件传输和多媒体业务通常具有上下行不对称特性。LTE TDD系统在支持不对称业务方面具有一定的灵活性。根据LTE TDD帧结构的特点,LTE TDD系统可以根据业务类型灵活配置LTE TDD帧的上下行配比。如浏览网页、视频点播等业务,下行数据量明显大于上行数据量,系统可以根据业务量的分析,配置下行帧多于上行

15、帧情况,如 6DL:3UL ,7DL:2UL,8DL:1UL,3DL:1UL等。而在提供传统的语音业务时,系统可以配置下行帧等于上行帧,如2DL:2UL。在LTE FDD系统中, 非对称业务的实现对上行信道资源存在一定的浪费, 必须采用高速分组接入(HSPA) 、EV-DO 和广播/组播等技术。相对于LTE FDD系统,LTE TDD系统能够更好的支持不同类型的业务,不会造成资源的浪费。(3)智能天线的使用智能天线技术是未来无线技术的发展方向,它能降低多址干扰,增加系统的吞吐量。在LTE TDD系统中, 上下行链路使用相同频率, 且间隔时间较短, 小于信道相干时间,链路无线传播环境差异不大,在使用赋形算法时,上下行链路可以使用相同的权值。与之不同的是, 由于FDD 系统上下行链路信号传播的无线环境受频率选择性衰落影响不同, 根据上行链路计算得到的权值不能直接应用于下行链路。因而, LTE TDD系统能有效地降低移动终端的处理复杂性。另外,在LTE TDD系统中,由于上下行信道一致, 基站的接收和发送可以共用部分射频单元, 从而在一定程度上降低了基站的制造成本。(4)

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 生活休闲 > 社会民生

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号