误差对系统性能的影响 (2).doc

上传人:人*** 文档编号:559566916 上传时间:2023-08-13 格式:DOC 页数:14 大小:324.50KB
返回 下载 相关 举报
误差对系统性能的影响 (2).doc_第1页
第1页 / 共14页
误差对系统性能的影响 (2).doc_第2页
第2页 / 共14页
误差对系统性能的影响 (2).doc_第3页
第3页 / 共14页
误差对系统性能的影响 (2).doc_第4页
第4页 / 共14页
误差对系统性能的影响 (2).doc_第5页
第5页 / 共14页
点击查看更多>>
资源描述

《误差对系统性能的影响 (2).doc》由会员分享,可在线阅读,更多相关《误差对系统性能的影响 (2).doc(14页珍藏版)》请在金锄头文库上搜索。

1、误差对系统性能的影响本文介绍了如何根据系统需求合理选择ADC,列举了ADC测量中可能遇到的各种误差源。采用12位分辨率的模数转换器(ADC)未必意味着你的系统将具有12位的精度。很多时候,令工程师们吃惊和不解的是:数据采集系统所表现出的性能往往远低于期望值。如果这个问题直到样机运行时才被发现,只好慌慌张张地改用更高性能的ADC,大量的时间被花费在重新更改设计上,同时,试投产的日程在迅速临近。问题出在哪里? 最初的分析中有那些因素发生了改变? 对于ADC的性能指标有一个深入的了解,将有助于发现一些经常导致性能指标不尽人意的细节所在。对于ADC指标的理解还有助于为你的设计选择正确的ADC。我们从建

2、立整个系统的性能需求入手,系统中的每个元器件都有相应的误差,我们的目标是将整体误差限定在一定的范围内。ADC是信号通道的关键部件,必须谨慎选择适当的器件。在我们开始评估整体性能之前,假设ADC的转换效率、接口、供电电源、功耗、输入范围以及通道数均满足系统要求。ADC的精度与几项关键规格有关,其中包括:积分非线性(INL)、失调和增益误差、电压基准的精度、温度效应、交流特性等。最好从直流特性入手评估ADC的性能,因为ADC的交流参数测试存在多种非标准方法,基于直流特性比较容易对两个IC进行比较。直流特性通常比交流特性更能反映器件的问题。系统要求确定系统整体误差的常见方法有两种:均方根和(RSS)

3、、最差工作条件下的测试。采用RSS时,对每项误差取平均,然后求和并计算开方值。RSS误差由下式计算:其中EN代表某个特定电路元件或参数的误差项。当所有误差不相干时这种方法最准确(实际情况可能如此,也可能不同)。利用最差条件分析法,所有误差项相加。这种方法能够确保误差植不会超出规定范围,它给出了最差条件下的误差限制,实际误差始终小于该值(通常会低出若干倍)。多数情况下,测量误差介于两种方法测试数值之间,更接近于RSS法提供的数值。可以根据误差预算选择使用典型误差和最差工作条件下的误差。具体选择时取决于许多因素,包括:测量值的标准方差、特定参数的重要性、误差之间的相互影响程度等。由此可见,很难找到

4、简捷的、必需遵循的规则。在我们的分析中,我们选择最差条件测试法。在本例中,假定我们需要0.1%或者说10位的精度(1/210),这样,只有选择一个具有更高分辨率的转换器才有意义。如果是一个12位的转换器,我们可能会想当然地以为精度已足够高;但是在没有仔细检查其规格书之前,我们并没有把握得到12位的性能(实际情况可能更好或更糟)。举例来说,一个具有4LSB积分非线性误差的12位ADC,最多只能提供10位的精度(假设失调和增益误差已得到修正)。一个具有0.5LSB INL的器件则可提供0.0122%的误差或13位的精度(消除了增益及失调误差以后)。要计算最佳精度,可用最大INL误差除以2N,其中N

5、是转换器位数。在我们的举例中,若采用0.075%误差(或11位)的ADC,则留给其余电路的误差余量只有0.025%,这其中包括传感器、前端信号调理电路(运放、多路复用器等等),或许还有数模转换器(DAC)、PWM信号或信号通路上的其它模拟电路。我们假设整体系统的总计误差预算基于信号通道各个电路元件的误差项目总和,另外我们还假设,将要测量的是一个缓慢变化的直流、双极性输入信号,具有1kHz的带宽,工作温度范围为0C到70C,并在0C至50C范围内保证性能。直流性能微分非线性虽说不被作为一项关键性的ADC参数,微分非线性(DNL)误差还是进入我们视野的第一项指标。DNL揭示了一个输出码与其相邻码之

6、间的间隔。这个间隔通过测量输入电压的幅度变化,然后转换为以LSB为单位后得到(图1)。值得注意的是INL是DNL的积分,这就是为什么DNL没有被我们看作关键参数的原因所在。一个性能优良的ADC常常声称“无丢码”。这就是说当输入电压扫过输入范围时,所有输出码组合都会依次出现在转换器输出端。当DNL误差小于1LSB时就能够保证没有丢码(图1a)。图1b、图1c和图1d分别显示了三种DNL误差值。DNL为-0.5LSB时(图1b),器件保证没有丢码。若该误差值等于-1LSB (图1c),器件就不能保证没有丢码,值得注意的是10码丢失。然而,当最大DNL误差值为1时,大多数ADC都会特别声明是否有丢码

7、。由于制造时的测试界限实际上要比规格书中所规定的更为严格,因此这种情况下通常都能够保证没有丢码。对于一个大于-1LSB (图1d中为-1.5LSB)的DNL,器件就会有丢码。图1a. DNL误差:没有丢码。图1b. DNL误差:没有丢码。图1c. DNL误差:丢失10码。图1d. DNL误差:AIN*数字输入是三种可能数值之一,扫描到输入电压时,10码将会丢失。随着DNL误差值的偏移(也就是说-1LSB,+2LSB),ADC转换函数会发生变化。偏移了的DNL值理论上仍然可以没有丢码。关键是要以-1LSB作为底限。值得注意的是DNL在一个方向上进行测量,通常是沿着转换函数向上走。将造成码N跳变所

8、需的输入电压值和码N+1时相比较。如果相差为1LSB,DNL误差就为零。如果大于1LSB,则DNL误差为正值;如果小于1LSB,DNL误差则为负值。有丢码并非一定是坏事。如果你只需要13位分辨率,同时你有两种选择,一个是DNL指标 4LSB的16位ADC (相当于无丢码的14位),价格为5美元,另一个是DNL 1LSB的16位ADC,价格为15美元,这时候,购买一个低等级的ADC将大幅度地节省你的元件成本,同时又满足了你的系统要求。积分非线性积分非线性(INL)定义为DNL误差的积分,因此较好的INL指标意味着较好的DNL。INL误差告诉设计者转换器测量结果距离理想转换函数值有多远。继续我们的

9、举例,对于一个12位系统来讲,2LSB的INL误差相当于2/4096或0.05%的最大非线性误差(这已占去ADC误差预算的2/3)。因此,有必要选用一个1LSB (或更好)的器件。对于1LSB的INL误差,等效精度为0.0244%,占ADC误差预算的32.5%。对于0.5LSB的指标,精度为0.012%,仅占ADC误差预算的16% (0.0125%/0.075%)。需要注意的是,无论是INL或DNL带来的误差,都不太容易校准或修正。失调和增益误差失调和增益误差很容易利用微控制器(C)或数字信号处理器(DSP)修正过来。就失调误差来讲,如果转换器允许双极性输入信号的话,操作将非常简单。对于双极性

10、系统,失调误差只是平移了转换函数,但没有减少可用编码的数量(图2)。有两套方法可以使双极性误差归零。其一,你可以将转换函数的x或y轴平移,使负满度点与单极性系统的零点相对准(图3a)。利用这种方法,可以简单地消除失调误差,然后,通过围绕“新”零点旋转转换函数可以对增益误差进行调节。第二种技术采用了一种迭代法。首先给ADC输入施加一个0V电压并执行一次转换;转换结果反映了双极性零点失调误差。然后,通过围绕负满度点旋转转换曲线实现增益调节(图3b)。注意此时转换函数已绕A点转过一定角度,使零点偏离了期望的转换函数。因此还需要进一步的失调误差校正。图2. 双极性系统的失调误差图3a和3b. 校正双极

11、性失调误差(注意:阶梯状转换函数已被一条直线取代,因为该图中包含所有码,而台阶已经小得无法分辨,看上去成为一条直线)。图3a和3b. 校正双极性失调误差(注意:阶梯状转换函数已被一条直线取代,因为该图中包含所有码,而台阶已经小得无法分辨,看上去成为一条直线)。图3a和3b. 校正双极性失调误差(注意:阶梯状转换函数已被一条直线取代,因为该图中包含所有码,而台阶已经小得无法分辨,看上去成为一条直线)。单极性系统还要复杂一些。如果失调为正值,可采用和双极性系统相似的处理方法。不同之处在于你将失去一部分ADC量程(见图4)。如果失调为负值,你将无法简单地通过一次转换测得失调误差。因为在零点以下,转换

12、器只能显示出零。这样,对于一个负失调误差的转换器,你必须缓慢地增加输入电压,以确定在什么地方ADC结果出现首次跳变。同样,你将失去一部分ADC量程。图4. 单极性系统中的失调误差回到我们的举例,两种情况中的失调误差可按下述方法获得:2.5V基准时+8mV的失调误差相当于12位ADC具有13LSB的误差(8mV/2.5V/4096)。虽然分辨率仍是12位,但是你必须从每次转换结果中扣除13个码以补偿失调误差。值得注意的是,实际上这时的可测量满量程值就变为了2.5V(4083/4096) = 2.492V。此范围以上的任何值都会使ADC溢出。因此,ADC的动态范围或者说输入范围减小了。这个问题在较

13、高分辨率的ADC中尤为显著;在16位系统中,8mV对应于210LSB (VREF = 2.5V)。如果失调为-8mV (假设为单极性输入),接近于零的小信号输入将不会引起任何输出变化,一直到模拟输入增加到+8mV 。这同样造成了ADC动态范围的减小。增益误差定义为满量程误差减去失调误差(图5)。满量程误差在转换函数曲线上最后一次ADC跳变处进行测量,并和理想ADC的转换函数相比较。增益误差可通过软件用一个简单的线性函数y = (m1/m2)(x)进行简单的校正,其中的m1是理想转换函数的斜率,m2是实际测得的转换函数的斜率(图5)。图5. 失调、增益和满量程误差增益误差指标中可能包含或不含AD

14、C参考电压对于误差的贡献。在电气规范中,检查一下增益误差的测试条件,并决定采用内部或外部基准工作是非常重要的。一般情况下,当采用片内基准时增益误差会比较大。如果增益误差为零,在对满量程模拟输入作转换时转换结果应为全1 (对于本例的12位系统则为3FFh) (见图6) 。由于我们的转换器不理想,全1转换结果可能会在施加的输入电压大于满量程(负增益误差)或小于满量程(正增益误差)时出现。有两种办法可以调整增益误差,其一是调节参考电压,以便在某特定参考电压下得到满量程输出,或者在软件中采用一个线性校正曲线改变ADC转换函数的斜率(一阶线性方程或查表法)。图6. 增益误差降低了动态范围和失调误差一样,

15、增益误差也会降低动态范围。举例来说,如果满量程输入电压时转换得到的数码输出为4050而非理想的4096 (12位转换器),也就是所谓的负增益误差,在这种情况下,高端的46个码将无法利用。类似地,如果满量程数码4096出现在输入电压低于满量程时,ADC的动态范围同样被降低了(见图6)。值得注意的是对于正的满量程误差,你无法在转换结果变为全1的点之外对转换器进行校准。对付失调和增益误差最简单的办法就是找一个误差值足够低的ADC,这样你就不必再考虑校正了。找到一个失调和增益误差小于4LSB的12位ADC并不困难。其它误差源码沿噪声码沿噪声是在转换函数中恰好发生编码跳变时出现的噪声。通常在规格书中对该

16、项特性不作规定。甚至对于较高分辨率的转换器(16位以上),由于更小的LSB间隔,码沿噪声更为显著,通常都对这项性能未作规定。很多时候,码沿噪声能有几个LSB。转换恰好位于代码边缘的模拟输入时,代码会在LSB位发生跳动。如果出现明显的码沿噪声,就应该对采样进行平均,这样可以有效地从转换结果中去除这种噪声。需要对多少个采样取平均? 如果码沿噪声为2/3LSB RMS,这接近于4LSB P-P。那么要将噪声降低到1LSB,则需要对16次采样取平均(性能的改进正比于采样数的均方根)。基准采用内部或外部基准的ADC的一个最大潜在误差源是参考电压。很多情况下,内置于芯片内部的基准通常都没有足够严格的规格。为了理解基准所带来的误差源,有必要特别关注一下三项指标:温漂,电压噪声,和负载调整。温漂温漂是规格书中最容易被忽视的一项指标。下面的举例可以

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 生活休闲 > 社会民生

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号