19.4 四边形课题学习 重心教案.doc

上传人:M****1 文档编号:559064975 上传时间:2023-10-25 格式:DOC 页数:4 大小:55.51KB
返回 下载 相关 举报
19.4 四边形课题学习 重心教案.doc_第1页
第1页 / 共4页
19.4 四边形课题学习 重心教案.doc_第2页
第2页 / 共4页
19.4 四边形课题学习 重心教案.doc_第3页
第3页 / 共4页
19.4 四边形课题学习 重心教案.doc_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

《19.4 四边形课题学习 重心教案.doc》由会员分享,可在线阅读,更多相关《19.4 四边形课题学习 重心教案.doc(4页珍藏版)》请在金锄头文库上搜索。

1、194 课题学习 重心 教学内容与背景材料 本节课主要学习几何图形中的重心问题(课本P123P125) 教学目标 知识与技能: 理解和掌握几何图形的重心的寻找方法 过程与方法: 经历寻找几何图形的重心的过程,领会物体重心的内在含义,提高操作应用能力发展几何识图意识 情感态度与价值观: 逐步形成严谨求实的科学态度,激发学生的直觉意识 重难点、关键 重点:寻找几何图形的重心,感受直觉意识 难点:寻找几何图形重心的位置 关键:把观察、猜想、操作、作图融合在一起,激发学生的直觉意识 教学准备 教师准备:尺规、教具:木条、四边形木板,平行四边形、矩形、菱形、正方形、三角形硬纸片 学生准备:预习本节课内容

2、,准备与教师准备同样的学具 学法解析 1认知题点:学习了三角形、平行四边形、矩形、菱形、正方形等几何图形,积累一定的经验的基础上学习本节课内容 2知识线索: 几何图形发现探究确定重心 3学习方式:采用操作感知的方式来发现、寻找、重心 教学过程 一、操作感知,寻求方法 【引入概念】 教师操作:拿出一块准备好的木板(四边形)找到一点,用一个手指顶住这一点,木板会保持平衡,告诉学生这一点就是这个几何图形的重心 教师活动:提出一些常见的几何图形,如:线段、三角形、四边形等的重心在哪个位置上呢?大家一起来探讨 教师教具:均匀的木条、规则四边形:正方形、长方形、菱形、一般平行四边形等硬纸片;三角形、五边形

3、硬纸片;钉子,细绳,小重物,刻度尺等 【活动方略】 问题1:寻找线段的重心 学生活动:出示学具:一根均匀的木条,去找这条木条的平衡点(分四人小组讨论) 小组活动: (1)用刻度尺量出平衡点的位置,相互比较 (2)从相互比较中得出线段的重心:线段的重心就是线段的中点 教师活动:巡视,并和学生共同试验,发现问题,最后归纳 问题2:寻找平行四边形的重心 学生活动:分四人小组,拿出各自的学具探索,相互比较 小组活动: (1)用一个手指顶住一块均匀的正方形硬纸片,寻找平衡点;(2)互相交流后,找到平行四边形重心是对角线的交点O(如图)(3)由于矩形、菱形、正方形都是特殊的平行四边形,可以发现它们的重心也

4、都在它们对角线的交点上 归纳小结:平行四边形的重心是它的两条对轴线的交点 问题3:寻找三角形的重心 学生活动:分四人小组,拿出各自的学具探索、发现问题 小组活动: (1)在一块质地均匀的三角形硬纸板的每一个顶点处钉一个小钉作为悬挂点 (2)用下端系有小锤的细线缠绕在一个小钉上,然后吊起硬纸片,记录垂线的“痕迹”; (3)在另一个小钉上重复(2)的活动,找到两条铅垂线的交点(记为O)(4)在第三个小钉上重复(2)的活动,观察第三条铅垂线经过点O,三条铅垂线和对边的交点D、E、F分别在对边中点,点O就是三角形的重心(如图) 归纳小结:三角形的三条中线交于一点,这一点就是三角形的重心 问题4:寻找任

5、意多边形的重心 学生活动:拓展,应用上面的问题3的方法去找任意五边形的重心 教师活动:对本节课寻找重心的问题进行归纳 二、课堂总结,发展潜能 通过本节课内容的学习,得到下面的结论: 1线段的重心点在这条线段的中点上; 2平行四边形、矩形、菱形、正方形的重心是在它们对角线交点上; 3三角形的重心是在这个三角形三条中线的交点上 三、拓展思维,继续发现 问题1:请你画出下面三角形的重心,然后用刻度尺量一量这个重心到顶点与这个顶点对边的中点的关系,与同伴交流 学生活动:分四人小组进行探索、得到规律是它们的关系是2:1,(可多画几块三角形探究) 四、布置作业,丰富思维 1课本P126 “数学活动” P1

6、26P127 活动题 P131 复习题 1,2,3,4,5,12 2选用课时作业优化设计五、课后反思 课时作业优化设计 【驻足“双基”】 1ABCD的周长为60cm,对角线交于O,AOB的周长比BOC的周长长8cm,则AB、BC的长是_ 2矩形两条对角线的夹角为60,较短的边长3.6cm,则对角线长为_ 3菱形ABCD的对角线AC、BD相交于O,ABC=120,如果AB=26cm,则DO=_cm 4如果M是ABCD中BC边的中点,且MA=MD,那么ABCD是( ) A菱形 B矩形 C正方形 D一般的平行四边形 5梯形ABCD中,ADBC,AEDC交BC于点E,如果ABE的周长为20cm,AD=

7、4cm,那么梯形ABCD的周长为( ) A24cm B28cm C32cm D36cm 【提升“学力”】6如图,在四边形ABCD中,M、N分别为AD、BC的中点,BD=AC,BD和AC相交于点O,MN分别与AC、BD相交于E、F,求证:OE=OF7如图,正方形ABCD的对角线AC与BD相交于O,BAC的平分线交BD于F,交BC于E,求证:CE=2OF 【聚焦“中考”】8如图,平行四边形ABCD中,AQ、BN、CN、DQ分别是DAB、ABC、BCD、CDA的平分线,AQ与BN交于P,CN与DQ交于M,在不添加其他条件的情况下,试写出一个由上述条件推出的结论,并给出证明过程(要求:推理过程中用到“

8、平行四边形”和“角平分线”这两个条件) 9已知四边形ABCD中,AB=DC,AC=BD,试探索四边形ABCD可能是什么形状的四边形,并证明你的结论答案:119cm,11cm 27.2cm 313 4B 5B 6提示:分别取AB中点G,连结MG、NG,利用三角形中位线性质可证 7提示:取AE中点G,得AEC的中位线OG,再通过角的关系证OGF=OFG 8.提示:解答本题要看清题目的“在不添加其他条件的情况下,试写出一个由上述条件推出的结论,并给出证明过程”,以及“(要求)”,由题设条件可以得出诸如APB是直角三角形,ABPDMC,ADQCBN,以及四边形PQMN是矩形等,读者只要写出一个即可9.如增加AD=BC可得出四边形是矩形;增加ADBC,四边形是等腰梯形,增加AC垂直平分BD,则这个四边形是正方形- 4 -

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 生活休闲 > 社会民生

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号