文档详情

齐鲁名校教科研协作体山东、湖北部分重点中学2024届高一数学第二学期期末联考模拟试题含解析

t****
实名认证
店铺
DOC
1.31MB
约15页
文档ID:559055083
齐鲁名校教科研协作体山东、湖北部分重点中学2024届高一数学第二学期期末联考模拟试题含解析_第1页
1/15

齐鲁名校教科研协作体山东、湖北部分重点中学2024届高一数学第二学期期末联考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分在每个小题给出的四个选项中,恰有一项是符合题目要求的1.不等式>0的解集是( )A.(-,0)(1,+) B.(-,0)C.(1,+) D.(0,1)2.为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是( )A.简单随机抽样 B.按性别分层抽样C.按学段分层抽样 D.系统抽样3.若函数在一个周期内的图象如图所示,且在轴上的截距为,分别是这段图象的最高点和最低点,则在方向上的投影为( )A. B. C. D.4.已知函数在上是减函数,则实数的取值范围是( )A. B. C. D.5.阅读如图的程序框图,运行该程序,则输出的值为( )A.3 B.1C.-1 D.06.棱长为2的正方体的内切球的体积为( )A. B. C. D.7.在中,角所对的边分别为,若的面积,则( )A. B. C. D.8.已知直线:是圆的对称轴.过点作圆的一条切线,切点为,则( )A.2 B. C.6 D.9.已知点在直线上,若存在满足该条件的使得不等式成立,则实数的取值范围是()A. B. C. D.10.不等式的解集是( )A. B.C.或 D.或二、填空题:本大题共6小题,每小题5分,共30分。

11.设函数是定义在上的偶函数,且对称轴为,已知当时,,则有下列结论:①2是函数的周期;②函数在上递减,在上递增;③函数的最小值是0,最大值是1;④当时,.其中所有正确结论的序号是_________.12.,则f(f(2))的值为____________.13.中国古代数学著作《算法统宗》有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人要走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后达到目的地.”则该人最后一天走的路程为__________里.14.用线性回归某型求得甲、乙、丙3组不同的数据的线性关系数分别为0.81,-0.98,0.63,其中_________(填甲、乙、丙中的一个)组数据的线性关系性最强15.已知向量满足,则 16.一船自西向东匀速航行,上午10时到达一座灯塔的南偏西距塔64海里的处,下午2时到达这座灯塔的东南方向的处,则这只船的航行速度为__________海里/小时.三、解答题:本大题共5小题,共70分解答时应写出文字说明、证明过程或演算步骤。

17.如图,在三棱柱中,侧面是边长为2的正方形,点是棱的中点.(1)证明:平面.(2)若三棱锥的体积为4,求点到平面的距离.18.已知分别为内角的对边试从下列①②条件中任选一个作为已知条件并完成下列(1)(2)两问的解答①;②.(1)求角 (2)若,,求的面积.19.已知向量.(1)求的值;(2)若,且,求.20.已知数列满足:,(1)求,的值;(2)求数列的通项公式;(3)设,数列的前n项和,求证:21.如图,在四棱锥中,底面为矩形,为等边三角形,且平面平面.为的中点,为的中点,过点,,的平面交于.(1)求证:平面;(2)若时,求二面角的余弦值.参考答案一、选择题:本大题共10小题,每小题5分,共50分在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由题意可得,,求解即可.【详解】,解得或,故解集为(-,0)(1,+),故选A.【点睛】本题考查了分式不等式的解法,考查了计算能力,属于基础题.2、C【解析】试题分析:符合分层抽样法的定义,故选C.考点:分层抽样.3、D【解析】根据图象求出函数的解析式,然后求出点的坐标,进而可得所求结果.【详解】根据函数在一个周期内的图象,可得,∴.再根据五点法作图可得,∴,∴函数的解析式为.∵该函数在y轴上的截距为,∴,∴,故函数的解析式为.∴,∴,又,∴向量在方向上的投影为.故选D.【点睛】解答本题的关键有两个:一是正确求出函数的解析式,进而得到两点的坐标,此处要灵活运用“五点法”求出的值;二是注意一个向量在另一个向量方向上的投影的概念,属于基础题.4、C【解析】根据复合函数单调性,结合对数型函数的定义域列不等式组,解不等式组求得的取值范围.【详解】由于的底数为,而函数在上是减函数,根据复合函数单调性同增异减可知,结合对数型函数的定义域得,解得.故选:C【点睛】本小题主要考查根据对数型复合函数单调性求参数的取值范围,属于基础题.5、D【解析】从起始条件、开始执行程序框图,直到终止循环.【详解】,,,,,输出.【点睛】本题是直到型循环,只要满足判断框中的条件,就终止循环,考查读懂简单的程序框图.6、C【解析】根据正方体的内切球的直径与正方体的棱长相等可得结果.【详解】因为棱长为2的正方体的内切球的直径与正方体的棱长相等,所以直径,内切球的体积为,故选:C.【点睛】本题主要考查正方体的内切球的体积,利用正方体的内切球的直径与正方体的棱长相等求出半径是解题的关键.7、B【解析】利用面积公式及可求,再利用同角的三角函数的基本关系式可求,最后利用余弦定理可求的值.【详解】因为,故,所以,因为,故,又,由余弦定理可得,故.故选B.【点睛】三角形中共有七个几何量(三边三角以及外接圆的半径),一般地,知道其中的三个量(除三个角外),可以求得其余的四个量.(1)如果知道三边或两边及其夹角,用余弦定理;(2)如果知道两边即一边所对的角,用正弦定理(也可以用余弦定理求第三条边);(3)如果知道两角及一边,用正弦定理.8、C【解析】试题分析:直线l过圆心,所以,所以切线长,选C.考点:切线长9、B【解析】根据题干得到,存在满足该条件的使得不等式成立,即,再根据均值不等式得到最小值为9,再由二次不等式的解法得到结果.【详解】点在直线上,故得到,存在满足该条件的使得不等式成立,即故原题转化为 故答案为:B【点睛】本题考查了“乘1法”与基本不等式的性质,考查了推理能力与计算能力,属于中档题.解决二元的范围或者最值问题,常用的方法有:不等式的应用,二元化一元的应用,线性规划的应用,等.10、B【解析】由题意,∴,即,解得,∴该不等式的解集是,故选.二、填空题:本大题共6小题,每小题5分,共30分。

11、①②④【解析】依据题意作出函数的图像,通过图像可以判断以下结论是否正确详解】作出函数的图像,由图像可知2是函数的周期,函数在上递减,在上递增,函数的最小值是0.5,最大值是1,当时, ,故正确的结论有①②④点睛】本题主要考查函数的图像与性质以及数形结合思想,意在考查学生的逻辑推理能力12、1【解析】先求f(1),再根据f(1)值所在区间求f(f(1)).【详解】由题意,f(1)=log3(11–1)=1,故f(f(1))=f(1)=1×e1–1=1,故答案为:1.【点睛】本题考查分段函数求值,考查对应性以及基本求解能力.13、3【解析】分析:每天走的路形成等比数列{an},q=,S3=1.利用求和公式即可得出.详解:每天走的路形成等比数列{an},q=,S3=1.∴S3=1=,解得a1=2.∴该人最后一天走的路程=a1q5==3.故答案为:3.点睛:本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于基础题.14、乙【解析】 由当数据的相关系数的绝对值越趋向于,则相关性越强可知,因为甲、乙、丙组不同的数据的线性相关系数分别为,所以乙线性相关系数的绝对值越接近,所以乙组数据的相关性越强.15、【解析】试题分析:=,又,,代入可得8,所以考点:向量的数量积运算.16、【解析】由 ,行驶了4小时,这只船的航行速度为 海里/小时.【点睛】本题为解直角三角形应用题,利用直角三角形边角关系表示出两点间的距离,在用辅助角公式变形求值,最后利用速度公式求出结果.三、解答题:本大题共5小题,共70分。

解答时应写出文字说明、证明过程或演算步骤17、(1)见解析(2)6【解析】(1)由平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行可判定平面;(2)由三棱锥的体积为4,可知四棱锥的体积,再由三棱锥的体积公式即可求得高.【详解】(1)证明:连接,与交于点,连接.因为侧面是平行四边形,所以点是的中点. 因为点是棱的中点,所以. 因为平面,平面,所以平面. (2)解:因为三棱锥的体积为4,所以三棱柱的体积为12, 则四棱锥的体积为.因为侧面是边长为2的正方形,所以侧面的面积为. 设点到平面的距离为,则,解得. 故点到平面的距离为6.【点睛】本题考查直线平行平面的判定和用三棱锥体积公式求点到平面的距离.18、(1)选择①,;选择②,(2)【解析】(1)选择①,利用正弦定理余弦定理化简即得C;选择②,利用正弦定理化简即得C的值;(2)根据余弦定理得,再求的面积.【详解】解:(1)选择①根据正弦定理得,从而可得,根据余弦定理, 解得, 因为,故.选择②根据正弦定理有, 即,即因为,故,从而有, 故(2)根据余弦定理得,得,即,解得,又因为的面积为, 故的面积为.【点睛】本题主要考查正弦定理余弦定理解三角形,考查三角形面积的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于中档题.19、(1);(2).【解析】(1)对等式进行平方运算,根据平面向量的模和数量积的坐标表示公式,结合两角差的余弦公式直接求解即可;(2)由(1)可以结合同角的三角函数关系式求出的值,再由同角三角函数关系式结合的值求出的值,最后利用两角和的正弦公式求出的值即可.【详解】(1);(2)因为,所以,而,所以,因为,,所以.因此有.【点睛】本题考查了已知平面向量的模求参数问题,考查了平面向量数量积的坐标表示公式,考查了两角差的余弦公式,考查了两角和的正弦公式,考查了同角的三角函数关系式的应用,考查了数学运算能力.20、 (1) ; ;(2) (3)见证明;【解析】(1)令可求得;(2)在已知等式基础上,用代得另一等式,然后相减,可求得,并检。

下载提示
相似文档
正为您匹配相似的精品文档
相关文档