气体保护焊电弧特性一.doc

上传人:壹****1 文档编号:558810129 上传时间:2023-09-05 格式:DOC 页数:28 大小:1.47MB
返回 下载 相关 举报
气体保护焊电弧特性一.doc_第1页
第1页 / 共28页
气体保护焊电弧特性一.doc_第2页
第2页 / 共28页
气体保护焊电弧特性一.doc_第3页
第3页 / 共28页
气体保护焊电弧特性一.doc_第4页
第4页 / 共28页
气体保护焊电弧特性一.doc_第5页
第5页 / 共28页
点击查看更多>>
资源描述

《气体保护焊电弧特性一.doc》由会员分享,可在线阅读,更多相关《气体保护焊电弧特性一.doc(28页珍藏版)》请在金锄头文库上搜索。

1、气体保护焊电弧特性(一)1.1 什么是焊接电弧?电弧是一种气体放电现象,它能把电能有效而简便地转化为热能、机械能和光能。定义:有焊接电源供给的,具有一定电压的两电极间或电极与母材间,在气体介质中产生的强烈而持久的放电现象称为焊接电弧。1.2 焊接电弧的基本特点是什么?焊接电弧的基本特点为:1)维持电弧稳定燃烧的电弧电压很低,只有1050V。2)在电弧中能通过很大电流,可从几安几千安。3)电弧具有很高的温度,弧柱温度是不均匀的,中心温度最高,可达到500030000K,而远离中心则温度降低。4)电弧能发出很强的光。电弧的光辐射波长为(1.750)10-7m。它包括红外线,可见光和紫外线3个部分。

2、1.3 电弧由哪几部分组成?其特点是什么?电弧是由3部分组成,即弧柱区、阴极区和阳极区,如图1所示。1、弧柱区弧柱区呈电中性,它是由分子、原子、受激的原子、正离子、负离子及电子所组成,其中带正电荷的离子与带负电荷的离子几乎相等,所以又称为等离子体。带电的粒子在等离子体定向移动,基本上不消耗能量,所以才能够在低电压条件下,传输大电流。传输电流的主要带电粒子是电子,大约占带电粒子总数的99.9%,其余为正离子。因为阴极区和阳极区的长度极短,所以可以认为弧柱区长度为电弧长度。弧柱区的电场强度较低,通常只有510V/cm。2、阴极区阴极被认为是电子之源。它向弧柱提供99.9%的带电粒子(电子)。阴极发

3、射电子的能力,对电弧稳定性影响极大。阴极区的长度为10-510-6cm,如果阴极压降为10V,则阴极区的电场强度为106107V/cm。3、阳极区阳极区主要是接受电子,但还应向弧柱提供0.1%的带电粒子(正离子)。通常阳极区的长度为10-210-3cm,则阳极区的电场强度为103104V/cm。由于阳极材料和焊接电流对阳极区压降影响很大,它可以在010V之间变化。例如当电流密度较大,阳极温度很高,使阳极材料发生蒸发时,阳极压降将降低,甚至到0V。1.4 试述短路引弧法的原理及提高引弧成功率的方法。熔化极气体保护电弧焊都是利用短路引弧法进行引弧,钨极氩弧焊大都采用非接触引弧法,但也有采用短路引弧

4、法。下面以熔化极气体保护焊为例说明短路引弧法的原理。熔化极气体保护电弧焊引弧时首先送进焊丝,并逐渐接近母材,如图2所示。一旦与母材接触,电源将提供较大的短路电流,利用在A点附近的焊丝爆断,进行引弧。如果在B点爆断,则引弧失败。所以在A点爆断是引弧成功的必要条件。在A点还是在B点爆断主要是由于焊丝在该点附近产生电阻热的大小,也就是其接触电阻的大小。A、B两点的接触电阻如图3所示。B点为焊丝与导电嘴的接触处,其接触电阻RB随时间变化很小,基本上不变。在A点却不同,A点为焊丝端头与母材的接触点。RA为接触电阻,在焊丝与母材接触瞬间RA为无穷大;随着短路电流的增加,A点迅速软化,使接触面积增加,于是R

5、A急剧减小。可见,为确保引弧成功,希望短路电流增长速度diS/dt越大越好,RA衰减速度越慢越好。也就是在RA很大时,短路电流iS增加到较高的值,使得在A点发生爆断。提高引弧成功率的方法如下:1)提高短路电流增长速度diS/dt,主要是改善电源的工作状态。如整流焊机中往往利用电流电感调节焊机的动态特性,以便减小飞溅和改善成形,但是却降低了diS/dt,而降低了引弧功率。为此,在引弧时常常利用旁路电路将直流电感短接,而引弧成功后再将该电感接入。此处,当逆变焊机出现后,充分利用电子电抗器调节电源动特性,而选用很小的直流电感,所以勿需采用上述方法,都可以得到很可靠的引弧过程。2)减小接触电阻RA的衰

6、减速度。引弧时令焊丝送进速度慢一些,以便减小焊丝与母材的压力增长速度,RA衰减速度减缓。送丝速度太慢也不利,通常选用1.53m/min。引弧成功后,应立刻转换为正常送丝速度。3)利用剪断效应引弧。一般情况下,焊接时都利用钳子剪断焊丝端头残留的金属熔滴小球,以利于引弧。但这样做很麻烦,所以现在许多气体保护焊设备增加了去球功能,也就是剪断效应。在焊接结束时,适当降低电弧电压和送丝速度,从而实现自动去球功能。4)导电嘴磨耗较大时,将增大B点处的接触电阻RB,不利于引弧。为此应及时更换导电嘴。1.5 试述高频高压引弧和高压脉冲引弧法的原理。钨极氩弧焊时,主要采用高频高压引弧法或脉冲引弧法。这两种方法都

7、是将钨极接近工件,但是不接触,它们中间留有25mm的间隙。这两种方法的电压都很高,达到20003000V。引弧时利用高压击穿电极与工件的空间,形成火花放电,在高压作用下,电弧空间形成很强的电场,加强了阴极发射电子及电弧空间的电离作用,使电弧空间由火花放电或辉光放电很快就转变到电弧放电。由于电弧放电时产生的高温,可以在低电压情况下维持电弧放电。这样就完成了引弧过程。引弧时需要高电压击穿电弧空间,为了安全而采用高频或脉冲电压。1.6 何谓最小电压原理?最小电压原理是电弧的一种特性,用以表征电弧的最小能量消耗的性能。大家知道,自由电弧是在两个电极之间的气体放电现象,其导电截面可以自由扩大和缩小,也就

8、是输入电弧的能量等于电弧散出的能量,于是表征电弧特性的各种物理参数,如弧柱直径(D)、弧柱温度(T)和弧柱电场强度(E)等都为确定值,其大小都遵循着能量消耗最小原则。最小电压原理是:对一个轴线对称的电弧,在给定的电流和边界条件下,当电弧处于稳定状态时,其弧柱直径(D)或温度(T)应使弧柱电场强度(E)具有最小值。利用最小电压原理可以解释许多电弧现象,例如当电弧被周围介质强迫冷却时(高速气流或环境温度降低),电弧将自动收缩其断面,使其电流密度升高,电场强度和电弧温度也提高。因为电弧的散热增加,要求电弧产生更多的热量给与补偿。电弧产热为IE,如果电流I不变,则E必定要增加。根据最小电压原理,电弧有

9、自动使E增加到最小限度的倾向,也就是热损失最小的倾向。所以在电弧被冷却时,电弧将自动收缩到某一个直径,这时电弧电场强度E增加得最小。1.7 何谓阴极斑点和阳极斑点?它们有什么特点?阴极斑点的定义:电弧放电时,负电极表面上集中发射电子的光亮极小区域。当阴极材料熔点、沸点较低,而且导热性很强时,即使阴极温度达到材料的沸点开始蒸发,此温度也不足以通过热发射产生足够数量的电子,阴极将进一步自动缩小其导电面积,直到在阴极导电面积前面形成密度很大的正离子空间电荷,形成很大的阴极压降值,足以产生强的电场发射,以补足热发射的不足,向弧柱提供足够的电子流维持电弧燃烧。此时阴极将形成面积更小、电流密度更大的斑点(

10、该斑点的电流密度达106108A/cm2)来导通电流,这种导电斑点称为阴极斑点。在用高熔点材料(W、C等)作阴极时,在小电流情况下,也可能产生上述的阴极斑点。当用低熔点材料(A1、Cu、Fe等)作阴极时,无论电流大小都可能产生阴极斑点。此时,阴极表面将由许多分离的阴极斑点组成斑点区,这些斑点在斑点区以很高速度跳动(其速度可达104105cm/s)。形成新的阴极斑点应具有如下条件,首先该点应具有发射电子的条件(主要是场发射和热发射),其次是电弧通过该点弧柱能量消耗较小,也就是IELC较小(I电流,E弧柱电场强度,LC弧柱长度)。总之阴极斑点的跳动,总是自动选择发射电子时消耗能量最低的点。如采用直

11、流反极性焊铝时,阴极斑点有自动寻找氧化膜的倾向,如图4所示。阳极斑点的定义:电弧放电时,正电极表面上集中接受电子的光亮微小区域。阳极的作用是接受电子和由阳极区提供弧柱所需要的0.001/I正离子流。当采用低熔点材料作阳极时(Fe、Cu、A1等),一旦阳极表面某处有熔化和蒸发现象发生时,由于金属的电离能大大低于一般气体的电离能,在有金属蒸气存在的地方,更容易产生热电离而提供正离子流,电子流也更容易从这里进入阳极,阳极表面上的导电区将在这里集中而形成阳极斑点。阳极斑点电流密度比阳极斑点要小,其数量级一般为102103A/cn2。对于低熔点阳极材料形成阳极斑点的条件是,首先该点有金属蒸发,其次是电弧

12、通过该点弧柱消耗能量较低(亦即IELC较小)。阳极斑点的移动不可能连续进行,总是跳动形式,如图5。新的阳极斑点总是自动寻找纯金属表面而避开氧化膜,因为大多数金属氧化物的熔点和沸点皆高于纯金属,而金属氧化物的电离电压较高。在小电流氩弧焊不锈钢薄板时,易发生阳极斑点跳动现象,这是十分不利的。此外,许多情况下也可能不形成阴极斑点或阳极斑点。如以高熔点电极(W、C等)作阴极,在大电流时,阴极温度很高,依靠热发射就可以维持电弧,阴极表面的电流密度与弧柱接近,温度均匀,不会形成阴极斑点。又如当电流较大时,阳极温度很高时,依靠阳极前面中性粒子热电离就可以提供0.001/I的正离子流,则阳极压降UA接近于零。

13、这时电弧与阳极接触不产生任何收缩,也不能形成阳极斑点。1.8 焊接电弧中存在哪些作用力?其产生机理是什么?焊接电弧是一个热源,同时也是一个力源。电弧产生的机械作用力对焊接质量影响很大。焊接电弧的作用力统称为电弧力,主要包括电磁力、等离子流力、斑点压力和短路爆破力等。1、电磁力由电工学可知,在两根相距不远的平行导线中,通过同方向的电流时,则产生相互吸引的力;反之,通过相反方向的电流时,则产生相互排斥的力。如图6所示。这个力的形成是由于在导体周围空间形成磁场,而两个通电导体又都处于磁场之中,受到磁场力作用,其单位长度导线受力大小与导线中流过的电流乘积成正比,与两导线间的距离成反比,如式(1)所示:

14、 I1I2 F= K (1) l式中 F单位长度受力大小; K常数; I1、I2导体1、2中流过的电流; l两导体间的距离。当电流从一个导体中流过时,整个电流可看成是许多平行的电流线组成,这些电流线之间也产生相互吸引力,则导体断面有收缩的倾向。如果导体是固态不能自由变形,此收缩力不能改变导体的外形;如果导体是可以自由变形的液态和气态,导体将发生收缩,如图7中液态段。这种现象称为电磁收缩效应,由此产生的力称为电磁力或电磁收缩力。这种力在导体内将引起径向力。假设导体为圆柱体,电流线在导体中的分布是均匀的,则导体任意半径r处的压力值可由式(2)表示: I2 Pr =K (R2-r2) (2) R4式中 Pr导体内任意半径r处的压力; R导体外径; I导体的总电流; K系数,K = (介质磁导率)。 4导体中心轴处的径向压力(P0)为: I2 P0 =K KJI (3) R2式中 P0导体中心轴处的径向压力;

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲 > 科普知识

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号