生命科学对农业发展的影响.doc

上传人:M****1 文档编号:558756270 上传时间:2022-09-20 格式:DOC 页数:7 大小:48.50KB
返回 下载 相关 举报
生命科学对农业发展的影响.doc_第1页
第1页 / 共7页
生命科学对农业发展的影响.doc_第2页
第2页 / 共7页
生命科学对农业发展的影响.doc_第3页
第3页 / 共7页
生命科学对农业发展的影响.doc_第4页
第4页 / 共7页
生命科学对农业发展的影响.doc_第5页
第5页 / 共7页
点击查看更多>>
资源描述

《生命科学对农业发展的影响.doc》由会员分享,可在线阅读,更多相关《生命科学对农业发展的影响.doc(7页珍藏版)》请在金锄头文库上搜索。

1、2011级农村区域发展(一)班 简林波 学号:3115003020生命科学对农业经济发展的影响摘要:生命科学与经济发展密不可分,不断为经济发展提供多种技术成果,为人类社会创造可观的经济效益。在农业生产方面,生命科学在常规育种提供大量优质动植物种源的基础上,进一步发挥分子育种的优势,为增进人类健康和提高人类生活质量供给种类繁多营养安全的农源生活用品。在新型能源方面,生命科学将有利于发现和利用更多生物能源,如农副产品发酵生产酒精高油含量植物生产燃料油太阳能分解水生产氢燃料等,为人类创造用之不竭的可再生能源。关键词:生命科学农业生产新型能源应用意义生命科学的定义:生命科学是研究生命的科学,它是研究生

2、物体的生命活动及其本质生物体的发生与发展生物体与环境相互作用规律等的科学。生命科学对经济建设和社会发展具有极其重要的作用。1.生物技术在农业生产的应用1.1生物技术应用于畜牧业1.11基因工程基因工程又称DNA重组技术,是指对不同生物的遗传基因,根据人们的意愿进行基因的切割、拼接和重新组合,然后再转人生物体内,产生人们所期望的产物或创造出具有新的遗传特征的生物类型。基因:口里使得人类可以克服物种问的遗传障碍。定向培养或仓 造出自然界所没有的新的生命形态,以满足人类社会的需要。基因工程在畜牧业上也得到广泛发展。例如利用鼠类有关促进角蛋白形成的基因获得了经遗传改良的绵羊,这种绵羊比普通棉羊产毛量提

3、高6左右 。最近美国科学家通过转基因技术,将深海鱼中含有的一种不饱和脂肪酸基因转移到了猪的基因组中。食用这些转基因克隆猪的猪肉,可预防心血管疾病。1.12细胞工程细胞工程是指应用细胞生物学和分子生物学方法,借助工程的实验方法或技术,在细胞水平上研究改造生物遗传特性和生物学特性,以获得特定的细胞、细胞产品或新生物体的一门科学技术。目前,人工受精、胚胎移植等技术已广泛应用于畜牧业生产,液氮超低温(一196)保存精液和胚胎,使优良畜、禽的交配数量与交配范围大为扩展,突破了交配季节的限制。另外,在细胞水平上改造卵细胞,可创造出高产奶牛、瘦肉型猪等新品种。结合流式细胞仪可分离出良种奶牛带有x染色体的精子

4、,与奶牛卵细胞融合后移植到普通黄牛子宫中可以起到“借腹生子”的效果。这种胚胎移植新技术极大地加快了奶业发展的步伐,提高了养殖业的经济效益。1.13 酶工程在现代畜牧业上,通过利用外源性消化酶的作用,提高饲料消化率,从而促进动物生长。饲用酶制剂不仅能消除饲料抗营养因子的有害作用,促进养分的消化和吸收,提高畜禽的生长速度、饲料转化效率和增进畜禽健康,而且能减少养殖业排污中氮、磷的排放,保护生态环境。应用饲用酶制剂是现代化养殖业中经济效益与生态效益兼顾的重要科学技术措施1.14发酵工程发酵工程对畜牧业影响在饲料方面尤为突出,如菌体蛋白粉是以谷物、食品发酵工业有机废液为来源,借助酵母菌细胞合成全效价蛋

5、白质,其粗蛋白含量含量在45以上,含有多种氨基酸、维生素、未知生长因子(UGF),应用于种鸡、种鸭、肉鸡、肉鸭、蛋鸡、猪、鱼、虾等养殖业的浓缩高蛋白饲料,改进了饲料的利用率,促进畜禽鱼虾生长,提高禽畜的存活率、增长率和产蛋量。1.2 生物技术应用于种植业1.21污染土壤的生物修复 重金属污染是造成土壤污染的主要污染物。重金属污染的生物修复是利用生物(主要是微生物、植物)作用,削减、净化土壤中重金属或降低重金属的毒性。其原理是:通过生物作用(如酶促反应)改变重金属在土壤中的化学形态,使重金属固定或解毒,降低其在土壤环境中的移动性和生物可利用性,通过生物吸收、代谢达到对重金属的削减、净化与固定作用

6、。污染土壤的生物修复过程可以增加土壤有机质的含量,激发微生物的活性,由此可以改善土壤的生态结构,这将有助于土壤的固定,遏制风蚀、水蚀等作用,防止水土流失。1.22 应用EM生物技术在种植业的应用EM在种植业中的应用 经在蔬菜、花卉、葡萄、小麦等作物上应用,起到了增产、抗病虫、改良土壤、改善作物品质、净化环境的作用。 ,:番茄田内用500倍液的EM发酵液进行植株喷施,一周后观察,比对照植株长势旺盛,叶片增厚,叶色深绿,农艺性状很好。更艟神奇的是用EM处理过的植株不但结果大而多,还有反常现象,HU平常第六、七层果枝上的果实总是越结越小,而用EM处理过的植株第六、七层果枝上的果实却越结越大,而且成熟

7、早,味道好,贮藏时间也长。1.23 生物农药在种植业的应用生物农药指非人工合成,具有杀虫、杀菌或抗病、除草能力的,并可以制成具有农药功效和商品价值的生物制剂,包括微生物源(细菌、病毒、真菌及其次级代谢产物农用抗生素)、植物源(生物碱)、动物源农药以及抗病虫草害的转基因植物等。微生物源农药包括细菌杀虫剂真菌杀虫剂 病毒杀虫剂 原生动物杀虫剂昆虫病原线虫制剂抗生素杀虫剂。目前筛选出的杀虫细菌约有100多种,主要分布在芽胞杆菌属(Bacillus),肠杆菌属(Enterobacter), 假单胞杆菌属(Pseudomonus),其中苏云金杆菌(B. thuringiensis, Bt) 是细菌杀虫剂

8、中的代表,目前已鉴定了70个血清型、82个亚种。苏云金芽孢杆菌(Bacillus thuringiensis, Bt) 革兰氏阴性菌,菌体短杆状,生鞭毛,单生或形成短链,内生芽孢。有若干菌株(亚种),产生不同的毒素,能特异地杀死不同昆虫 。2.生命科学与农业的可持续发展农业的首要任务是解决粮食短缺的问题。世界人口在增加,粮食的需求量增大,而耕地面积却在减少,因而必须依靠培养优良品种,大幅度提高单产。过去的几十年中是靠传统的杂交育种,在21世纪,基因工程将在育种中发挥重要作用。人不但要吃饱,还要求吃好,食品要更加符合营养要求。应用基因工程可以改善粮食和畜牧产品品质,譬如增加谷物中的蛋白质的含量,

9、使家畜家禽的蛋白质成分与人的需要更接近等。要实现农业可持续发展,必须克服农业化学化带来的恶果。化肥与农药的大量使用虽然提高了农作物产量,但是消耗了大量的能源与资源,还造成严重的环境污染。固氮基因工程研究已有不少进展,如若成功,农作物将摆脱单纯对氮肥的依赖。通过基因工程培育抗病虫害的农作物新品种,实行生物防治,将降低对农药的依赖。2.1生物技术应用于环境的技术2.11污水的生物净化污水中的有毒物质的成分十分复杂,包括各种酚类、氰化物、重金属、有机磷、有机汞、有机酸、醛、醇及蛋白质等等。微生物通过自身的生命活动可以解除污水的毒害作用,从而使污水中的有毒物质转化为有益的无毒物质,使污水得到净化。当今

10、固定化酶和固定化细胞技术处理污水就是生物净化污水的方法之一。固定化酶和固定化细胞技术是酶工程技术。固定化酶又称水不溶性酶,是通过物理吸附法或化学键合法使水溶性酶和固态的不溶性载体相结合,将酶变成不溶于水但仍保留催化活性的衍生物,微生物细胞是一个天然的固定化酶反应器,用制备固定化酶的方法直接将微生物细胞固定,即是可催化一系列生化反应的固定化细胞。运用固定化酶和固定化细胞可以高效处理废水中的有机污染物、无机金属毒物等,此方面国内外成功的例子很多,如德国将能降解对硫磷等9种农药的酶,以共介结合法固定于多孔玻璃及硅珠上,制成酶柱,用于处理对硫磷废水,去除率达95%以上;近几年我国在应用固定化细胞技术降

11、解合成洗涤剂中的表面活性剂直链烷基苯磺酸钠(LAS)方面取得较大进展,对于含100mg/L废水,降解率和酶活性保存率均在90%以上;利用固定化酵母细胞降解含酚废水也已实际应用于废水处理。转贴2.12白色污染的消除废弃塑料和农用地膜经久不化解,估计是形成环境污染的重要成分。据估计我国土壤、沟河中塑料垃圾有百万吨左右。塑料在土壤中残存会引起农作物减产,若再连续使用而不采取措施,十几年后不少耕地将颗粒无收,可见数量巨大的塑料垃圾严重影响着生态和环境,研究和开发生物可降解塑料已迫在眉睫。利用生物工程技术一方面可以广泛地分离筛选能够降解塑料和农膜的优势微生物、构建高效降解菌,另一方面可以分离克隆降解基因

12、并将该基因导入某一土壤微生物(如:根瘤菌)中,使两者同时发挥各自的作用,将塑料和农膜迅速降解。同时,还需大力推行可降解塑料和地膜的研发、生产和应用。有些微生物能产生与塑料类似的高分子化合物即聚酯,这些聚酯是微生物内源性贮藏物质,可以用发酵方法进行生产,由此形成的塑料和地膜因有可被生物降解、高熔点、高弹性、不含有毒物质等优点而在医学等许多领域有极好的应用前景。为了降低成本、提高产量,人们正在用重组DNA技术对相关的微生物进行改造,此方面目前一个研究热点是采用微生物发酵法生产聚-羟基烷酸(PHAs),研究人员正设法构建出自溶性PHAs生产菌种,即将PHAs重组菌进行发酵,在积累大量的PHAs后,加

13、入信号物质,使裂解蛋白产生,细胞壁破坏,PHAs析出,以简化胞内产物PHAs的提取过程,降低提取成本。2.13化学农药污染的消除废弃塑料和农用地膜经久不化解,估计是形成环境污染的重要成分。据估计我国土壤、沟河中塑料垃圾有百万吨左右。塑料在土壤中残存会引起农作物减产,若再连续使用而不采取措施,十几年后不少耕地将颗粒无收,可见数量巨大的塑料垃圾严重影响着生态和环境,研究和开发生物可降解塑料已迫在眉睫。利用生物工程技术一方面可以广泛地分离筛选能够降解塑料和农膜的优势微生物、构建高效降解菌,另一方面可以分离克隆降解基因并将该基因导入某一土壤微生物(如:根瘤菌)中,使两者同时发挥各自的作用,将塑料和农膜

14、迅速降解。同时,还需大力推行可降解塑料和地膜的研发、生产和应用。有些微生物能产生与塑料类似的高分子化合物即聚酯,这些聚酯是微生物内源性贮藏物质,可以用发酵方法进行生产,由此形成的塑料和地膜因有可被生物降解、高熔点、高弹性、不含有毒物质等优点而在医学等许多领域有极好的应用前景。为了降低成本、提高产量,人们正在用重组DNA技术对相关的微生物进行改造,此方面目前一个研究热点是采用微生物发酵法生产聚-羟基烷酸(PHAs),研究人员正设法构建出自溶性PHAs生产菌种,即将PHAs重组菌进行发酵,在积累大量的PHAs后,加入信号物质,使裂解蛋白产生,细胞壁破坏,PHAs析出,以简化胞内产物PHAs的提取过

15、程,降低提取成本。2.2 生物能源在农业上的应用2.21沼气应用技术用作沼气发酵原料的有机物种类繁多,如禽畜粪便、作物秸秆、食品加工废物和废水,以及酒精废料等,其主要化学成分为多糖、蛋白质和脂类。其中多糖类物质是发酵原料的主要成分,它包括淀粉、纤维素、半纤维 素、果胶质等。这些复杂有机物大多数在水中不能溶解,必须首先被发酵细菌所分泌的胞外酶水解为可溶 性糖、肽、氨基酸和脂肪酸后,才能被微生物所吸收利用。发酵性细菌将上述可溶 性物质吸收进入细胞后,经过发酵作用将它们转化为乙酸、丙酸、丁酸等脂肪酸和醇类及一定量的氢、二氧化碳。在沼气发酵测定过程中,发酵液中的乙酸、丙酸、丁酸总量称为中挥发酸(TVA

16、)。蛋白质类物质被发酵性细菌分解为氨基酸,又可被细菌合成细胞物质而加以利用,多余时也可以进一步被分解生成脂肪酸、氨和硫化氢等。蛋白质含量的多少,直接影响沼气中氨及硫化氢的含量,而氨基酸分解时所生成的有机酸类,则可继续转化而生成甲烷、二氧化碳和水。脂类物质在细菌脂肪 酶的作用下,首先水解生成甘油和脂肪酸,甘油可进一步按糖代谢途径被分解,脂肪酸则进一步被微生物分解为多个乙酸。自80年代以来建立起的沼气发酵综合利用技术沼气为纽带,物质多层次利用、能量合 理流动的高效农产模 式 ,巳逐渐成为我国农村地区利用沼气技术促进可持续发展的有效方法。通过沼气发酵综合利用技术沼气用于农户生活用能和农副产品生产、加工 ,沼液用料、饲料、生物农药 、培养料液 的生产,沼渣用于肥料、的生产(如图1.1),我 国北方推广的塑料大棚、沼气池、禽畜舍和相结合

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲 > 科普知识

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号