钻井井控设计.doc

上传人:pu****.1 文档编号:558415855 上传时间:2023-04-20 格式:DOC 页数:7 大小:51.02KB
返回 下载 相关 举报
钻井井控设计.doc_第1页
第1页 / 共7页
钻井井控设计.doc_第2页
第2页 / 共7页
钻井井控设计.doc_第3页
第3页 / 共7页
钻井井控设计.doc_第4页
第4页 / 共7页
钻井井控设计.doc_第5页
第5页 / 共7页
点击查看更多>>
资源描述

《钻井井控设计.doc》由会员分享,可在线阅读,更多相关《钻井井控设计.doc(7页珍藏版)》请在金锄头文库上搜索。

1、钻井井控设计1.油气井井口距高压线及其他永久性设施不小于75m;距民宅不小于100m;距铁路、高速公路不小于200m;距学校、医院和大型油库等人口密集性、高危性场所不小于500m。含硫油气井应急撤离措施参见SY/T 5087有关规定。2.对井场周围一定范围内的居民住宅、学校、厂矿(包括开采地下资源的矿业单位)、国防设施、高压电线和水资源情况以及风向变化等进行勘察和调查,并在地质设计中标注说明。特别需标注清楚诸如煤矿等采掘矿井坑道的分布、走向、长度和离地表深度。“12.23” 事故发生前,井控相关标准制定时的主要出发点是规范油气井钻井作业中的井控工作,保护作业人员的人身安全和避免油气资源及钻井设

2、备受损失,但对井场周边的公共设施及居民等的安全关注较少,以为危险很少有机会或不太可能降临在井场周边群众的头上。这两条的内容完善了1999年版本的不足,上述条款中油气井井口距公共设施和人口密集性、高危场所的距离经“钻井安全标准紧急清理工作会议”提出,由“行业标准清理审查会”的代表审定(2004年3月)。具体距离是综合考虑SY/T5272常规钻井安全技术规程、SY/T5466钻前工程技术条件、SY/T5958井场布置原则和技术要求等标准修订而成:SY5272:3.2.4a.井场边缘应距铁路10KV以上高压电路及其他永久性设施不少于50m;b.井场距居民住宅不少于100m。SY/T5466-1997

3、3一般油、气井、井口距民房400m以外;井场边缘距铁路、高压输电线路、地下电缆及其他永久性设施不得少于50m;高压油、气井、井口距民房400m以外;井场边缘铁路、高压输电线路、地下电缆及其他永久性设施不得少于100m。SY/T5958-94高压油气井,井口距民房150m以外,井场边缘距铁路,高压输电线路、地下电缆及其他永久性设施不得小于100m;含硫油气田的井,井口距民房的距离应以使其不受H2S扩散影响为准则。2004年3月25日27日在北京召开了行业标准清查会,来自三大石油集团28个单位30名代表经认真审议,取得共识,提出修改意见:油气井井口距铁路、高速公路不少于200m;距学校、医院和大型

4、油库等人口密集性、高危场所不小于500m;距高压线及其他永久性设施不小于75m。在钻井作业期间,应撤离距油气井井口100m范围内的居民;对含硫油气井(20mg/m3)、高压油气井和区域探井,在钻开油气层前2天到完井期间,应撤离距油气井井口500m范围内的居民。此条规定是一般性、通用性的技术条件,对特殊情况应进行专项安全风险评估,并采取或增加相应的安全保障措施,然后调整技术条件。2004年8月20日在北京召开了含硫技术标准专家咨询会,专家认为“井口与民房之间的距离不少于100m”是必要的,100m是布置井场时就应该考虑的最低要求。井口安全距离应与含硫化氢天然气井应急撤离问题分别表述,应急撤离要求

5、在应急预案中予以规定。专家针对四川石油管理局和西南油气田分公司提出的“当油气井井喷失控后,应立即按应急预案,协助地方政府撤离距井口500m范围内的居民和其他人员”认为:对含硫油气井,每口井在钻开油气层前两天到完井期间撤离距井口500m范围内的居民,影响面比较大,运作成本巨大可以作井喷失控后的应急措施在正常状态下,每口井都采用这种措施是不可行的。计算天然气中硫化氢分压PH2S = P总 H2S%H2S分压 气体总压力 体积%浓度或克分子%浓度以g/cm3表示的气体浓度化成体积%公式:%=10-3G/22.4M%:气体体积%G:气体浓度:g/ cm3M:气体克分子量:g22.4:1Mol气体标准状

6、态下体积:l为保证含硫油气井钻井过程中硫化氢溢出或放喷点火生成的二氧化硫对井场周边群众造成伤害,SY/T5087中规定:“应对拟定探井周围3Km、生产井位2Km范围内的居民住宅、学校、铁路和厂矿等进行勘测并在设计书中标明其位置”。含硫化氢天然气的定义在SY/T5087中已作了规定:含硫化氢天然气指天然气的总压力等于或大于0.4MPa,而且该气体中的硫化氢分压等于或高于0.0003MPa;或硫化氢含量大于75mg/m3(50ppm)的天然气。含硫化氢天然气的界定来源于美国腐蚀工程师协会NACE MRO175-94气田设备用抗应力裂纹的金属材料,SY/T0599和SY/T5087还给酸性天然气-油

7、系统是否属于酸性环境下了定义:A.当天然气与油之比大于1000 m3/t时,按酸性天然气的条件划分;B.当天然气与油之比等于或小于1000 m3/t时,a)若系统总压力大于1.8Mpa,则按酸性天然气的条件划分;b)若系统总压力等于或小于1.8Mpa,天然气中硫化氢分压大于0.07Mpa或硫化氢体积百分比浓度大于15%,则为酸性天然气-油系统。含硫油气井应急撤离措施在SY/T5087中有较详细的规定:应急响应当硫化氢浓度达到15mg/m3 (10ppm) 的阈限值时启动应急程序,现场应:a)立即安排专人观察风向、风速以便确定受侵害的危险区;b)切断危险区的不防爆电器的电源;c)安排专人佩戴正压

8、式空气呼吸器到危险区检查泄漏点;d)非作业人员撤入安全区。当硫化氢浓度达到30mg/m3 (20ppm)的安全临界浓度时,按应急程序应:a)戴正压式空气呼吸器;b)向上级(第一责任人及授权人)报告;c)指派专人至少在主要下风口100m、500m和1000m处进行硫化氢监测,需要时监测点可适当加密;d)实施井控程序,控制硫化氢泄漏源;e)撤离现场的非应急人员;f)清点现场人员;g)切断作业现场可能的着火源;h)通知救援机构。当井喷失控,井口主要下风口100m以远测得硫化氢浓度达到75mg/m3 (50ppm)时,按应急程序应立即执行:a)由现场总负责人或其指定人员向当地政府报告,协助当地政府作好

9、井口500m范围内的居民的疏散工作,根据监测情况决定是否扩大撤离范围;b)关停生产设施;c)设立警戒区,任何人未经许可不得入内;d)请求援助。当井喷失控时,井场硫化氢浓度达到150mg/m3 (100ppm)的危险临界浓度时,现场作业人员应按预案立即撤离井场。现场总负责人应按应急预案的通讯表通知(或安排通知)其他有关机构和相关人员(包括政府有关负责人)。由施工单位和生产经营单位按相关规定分别向其上级主管部门报告。在采取控制和消除措施后,继续监测危险区大气中的硫化氢及二氧化硫浓度,以确定在什么时候方能重新安全进入。这里要强调的是:1.在地质设计书中必须详查和标注井口周围500米范围内的居民和其他

10、人员(学校、医院、地方政府、厂矿等)的分布情况。并将每户居民的人数、户主姓名、电话等资料纳入钻井队应急预案之中。2.通过地方政府、村委会向群众讲解硫化氢的相关知识,包括遭遇硫化氢时的自救和相互救护方法和逃生路线等。3. 将应急预案的内容(制定预案应与地方政府、村委会沟通),尤其是应急预案实施时,地方政府和村委会的职责告知地方政府和村委会。可根据油气产量、硫化氢的含量、井场周围环境等情况选择性地与地方政府、村委会进行一次应急预案实施演练。“在这样的演练中,要包括动用设备和测试通讯设备,而模拟伤员要被送往有医治模拟伤情设施的医院”。4.应急预案应根据硫化氢和二氧化硫的扩散特性考虑硫化氢和二氧化硫浓

11、度可能产生危害的严重程度和影响区域,SY/T5087其资料性附录中推荐了API RP49-2001版本中的“硫化氢扩散的筛选方法”,即利用一定条件下的硫化氢释放数学模型来预测其不同浓度下的暴露半径(即扩散半径),但RP49中说:附录中建模工作是在假设平衡浮力的气态硫化氢在稳定的气象条件下,在平坦的乡村地形下释放等较理想的条件下进行的,而影响暴露半径的因素有:液体/气体悬浮物的密度、释放速率和方向、密集的云雾、硫化氢释放形式(井喷、管线破裂等)复杂地形和建筑物、井喷流体的温度等,这些因素都会对计算出来的暴露半径值产生很大的影响,而这些大多数影响因素计算模型并未考虑,因而即使API RP49-20

12、01版本推荐的这些预算模型也仅仅是指出建模预算井喷时硫化氢释放,在一定时间后其暴露半径的一种研究方向,SY/T5087中有一句话“美国石油学会没有认可任何具体模型”。5.应急预案应随环境条件的变化(如钻井作业期间周边居民的增减、动迁,公共设施的变化等)和油气井作业的变化而修定。在西南石油学院中加中心召开的“高含硫开发HSE规范及应急技术”研讨会上,介绍了加拿大阿尔伯达省在高含硫气田开发过程中安全管理方面的经验(能够开发含硫量达35%左右的构造),其中关于硫化氢危害区与井口距离的计算方法来确定应急撤离范围可作为参考。(1)一级:H2S释放率 0.3m3/S;100m内不能有居民和其他商业行为;(

13、2)二级:0.3m3/S H2S释放率 2m3/S;500m内不能有居民和其他商业行为;(3)三级:2m3/S H2S释放率6m3/S;4000m内不能有居民和其他商业行为。除用上述方法来预测应急撤离范围以外,当然,最为可靠的方法是当含硫油气井井喷发生后(其硫化氢含量超过30mg/m3),向当地季节风下风方向派遣监测人员,携硫化氢监测仪和正压式空气呼吸器定点监测所在位置空气中的硫化氢浓度,一旦监测点空气中的硫化氢浓度达到30mg/m3,应急撤离范围也就确定了。若井喷仍处于失控状态,监测人员再继续往外延伸监测点的距离,并根据监测结果扩大应急撤离范围。根据物探资料及本构造邻近井和邻构造的钻探情况,

14、提供本井全井段地层孔隙压力和地层破裂压力剖面(裂缝性碳酸盐岩地层可不作地层破裂压力曲线,但应提供邻近已钻井地层承压检验资料)、浅气层资料、油气水显示和复杂情况。本条主要强调三点:1.地质设计中应提供本构造邻近井(若是探井就提供邻近构造邻近井)的地层孔隙压力和地层破裂压力资料,油、气、水显示和复杂情况提示。2.裂缝性碳酸盐岩地层既是同构造、同一层位,由于裂缝发育程度的不同,地层破裂压力并不象均质地层(如砂岩、泥页岩地层)那样随井深而增加,因而无规律可言,所以不要求作破裂压力曲线。3.重视浅气层资料。若是探井,尤其要重视浅气层的井控工作,否则,就会造成失控的恶果。根据地质提供的资料,钻井液密度设计

15、以各裸眼井段中的最高地层孔隙压力当量钻井液密度值为基准,另加一个安全附加值:a)油井、水井为0.05g/cm30.10g/cm3或控制井底压差1.5MPa3.5MPa;b)气井为0.07g/cm30.15g/cm3或控制井底压差3.0MPa5.0MPa。具体选择钻井液密度安全附加值时,应根据实际情况考虑下列影响因素:地层孔隙压力预测精度;油层、气层、水层的埋藏深度;地层油气中硫化氢的含量;地应力和地层破裂压力;井控装置配套情况。具体选择钻井液安全附加密度值和安全附加压力值时,所考虑的影响因素中,“地层油气中硫化氢的含量”在SY/T5087中作了明确规定:“钻开高含硫地层的设计钻井液密度,其安全附加密度在规定的范围内或附加井底压力在规定的范围内应取上限值。”其目的就是不让硫化氢溢流进入井筒,尽量减少硫化氢对套管、钻杆、钻井液以及返出地面后对作业人员造成伤害。根据地层孔隙压力梯度、地层破裂压力梯度、岩性剖面及保护油气层的需要,设计合理的井身结构和套管程序,并满足如下要求:a)探井、超深井、复杂井的井身结构应充分估计不可预测因素,留有一层备用套管;b)在地下矿产采掘区钻井,井筒与采掘坑道、矿井通道之间的距离不少于100m,套管下深应封住开采层并超过开采段100m;c)套管下深要考虑下部钻井最高钻井液密度和溢

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲 > 社会民生

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号