基于MATLAB的GMSK系统的设计仿真.doc

上传人:桔**** 文档编号:558365546 上传时间:2022-09-22 格式:DOC 页数:32 大小:733.54KB
返回 下载 相关 举报
基于MATLAB的GMSK系统的设计仿真.doc_第1页
第1页 / 共32页
基于MATLAB的GMSK系统的设计仿真.doc_第2页
第2页 / 共32页
基于MATLAB的GMSK系统的设计仿真.doc_第3页
第3页 / 共32页
基于MATLAB的GMSK系统的设计仿真.doc_第4页
第4页 / 共32页
基于MATLAB的GMSK系统的设计仿真.doc_第5页
第5页 / 共32页
点击查看更多>>
资源描述

《基于MATLAB的GMSK系统的设计仿真.doc》由会员分享,可在线阅读,更多相关《基于MATLAB的GMSK系统的设计仿真.doc(32页珍藏版)》请在金锄头文库上搜索。

1、课程设计报告题 目:基于MATLAB的GMSK系统的设计仿真 学生姓名: 学生学号: 系 别: 专 业: 届 别: 指导教师: 基于MATLAB的GMSK系统的设计仿真1课程设计的任务与规定1.1课程设计的任务(1)加深对GMSK基本理论知识的理解。(2)培养独立开展科研的能力和编程能力。(3)通过SIMULINK对GMSK调制系统进行仿真。1.2 课程设计的规定(1)观测基带信号和解调信号波形。(2)观测已调信号频谱图。(3)分析调制性能和BT参数的关系。(4)与MSK系统的对比。1.3 课程设计的研究基础调制原理图如图1,图中滤波器是高斯低通滤波器,它的输出直接对VCO进行调制,以保持已调

2、包络恒定和相位连续。图1 GMSK调制原理图为了使输出频谱密集,前段滤波器必须具有以下待性:1.窄带和锋利的截止特性,以克制FM调制器输入信号中的高频分量;2.脉冲响应过冲量小,以防止FM调制器瞬时频偏过大;3.保持滤波器输出脉冲响应曲线下面积相应pi/2的相移。调制指数为1/2。前置滤波器以高斯型最能满足上述条件,这也是高斯滤波器最小移频键控(GMSK)的由来。GMSK本是MSK的一种,而MSK又是是FSK的一种,因此,GMSK检波也可以采用FSK检波器,即包络检波及同步检波。而GMSK还可以采用时延检波,但每种检波器的误码率不同。我们在构建数字通信系统的模型后,运用计算机仿真作为分析手段,

3、对在不同的通信环境下设计方案的误码性能进行定量分析,用来对各调制,解调方案性能进行评估。由于GMSK信号具有良好的频潜效率、以及恒包络性质,因而广泛的应用于移动通信系统。高斯最小频移键控(GMSK)由于带外辐射低因而具有很好的频谱运用率,其恒包络的特性使得其可以使用功率效率高的C类放大器。这些优良的特性使其作为一种高效的数字调制方案被广泛的运用于多种通信系统和标准之中。如上所述,GMSK有着广泛的应用。因此,从本世纪80年代提出该技术以来,广大科研人员进行了大量的针对其调制解调方案的研究。GMSK非相干解调原理图如图2,图中是采用FM鉴频器(斜率鉴频器或相位鉴频器)再加判别电路,实现GMSK数

4、据的解调输出。图2 GMSK解调原理图2 GMSK系统设计2.1 信号发生模块由于GMSK信号只需满足非归零数字信号即可,本设计中选用(Bernoulli Binary Generator)来产生一个二进制序列作为输入信号。图3 GMSK信号产生器该模块的参数设计这只重要涉及以下几个。其中probability of a zero 设立为0.5表达产生的二进制序列中0出现的概率为0.5;Initial seed 为61表达随机数种子为61;sample time为1/1000表达抽样时间即每个符号的连续时为0.001s。当仿真时间固定期,可以通过改变sample time参数来改变码元个数。例

5、如仿真时间为10s,若sample time为1/1000,则码元个数为10000。如图4所示。图4 Bernoulli Binary Generator参数设立2.2 调制解调模块图5 GMSK调制解调模块GMSK Modulator Baseband为GMSK基带调制模块,其input type参数设为Bit表达表达模块的输入信号时二进制信号(0或1)。BT product为0.3表达带宽和码元宽度的乘积。其中B是高斯低通滤波器的归一化3dB带宽,T是码元长度。当BT=时,GMSK调制信号就变成MSK调制信号。BT=0.3是GSM采用的调制方式。Plush length则是脉冲长度即GMS

6、K调制器中高斯低通滤波器的周期,设为4。Symbol prehistory表达GMSK调制器在仿真开始前的输入符号,设为1。Phase offset 设为0,表达GMSK基带调制信号的初始相位为0。Sample per symbol为1表达每一个输入符号相应的GMSK调制器产生的输出信号的抽样点数为1。如图6所示。AWGN Channel为加性高斯白噪声模块,高斯白噪声信道的Mode参数设立为Signal to noise(SNR),表达信道模块是根据信噪比SNR拟定高斯白噪声的功率,这时需要拟定两个参数:信噪比和周期。而将SNR参数设为一个变量xSNR是为了在m文献中编程,计算不同信噪比下的

7、误码率,改变SNR即改变信道信噪比。如图7所示。GMSK Demodulator Baseband是GMSK基带解调器。其前六项参数与GMSK调制器相同,并设立的值也相同。最后一项为回溯长度Traceback Length,设为变量Tracebacklength,在m文献通过改变其值,可以观测回溯长度对调制性能的影响。如图8所示。图6 GMSK Modulator Baseband参数设立图7 AWGN Channel参数设立图8 GMSK Demodulator Baseband参数设立2.3 误码率计算模块图9 误码率计算模块Receive dely(接受端时延)设立为回溯长度加一,表达接

8、受端输入的数据滞后发送端数据TracebackLength+1个输入数据;Computation delay(计算时延)设为0,表达错误率记录模块不忽略最初的任何输入数据。Computation mode(计算模式)设立为Entire frame(帧计算模块),表达错误率记录模块对发送端和接受端的所有数据进行记录。Output data(输出数据)设为workspace,表达竟记录数据输出到工作区。Variable name (变量名)则是设立m文献中要返回的参数的名称,设为xErrorRate。如图10所示。 图10 Error Rate Calculation参数设立2.4 波形观测模块2

9、.4.1调制、解调信号观测模块由于GMSK调制信号是一个复合信号,所以只用示波器(Scope)无法观测到调制波形,所以在调制信号和示波器间加一转换模块Complex to magnitude-angle将调制信号分别在幅度和相角两方面来观测。图11调制信号观测模块将Complex to magnitude-angleoutput的output参数设为magnitude and angle,表达同时输出调制信号的幅度和相角。示波器scope1的number of axes 为2表白有纵坐标个数为2;time range表达时间轴的显示范围,设为auto,表达时间轴的显示范围为整个仿真时间段。Ti

10、ck Tabels 设为bottom axis only时,只显示各个纵坐标以及最下面的横坐标的标签。如图12所示。图12 Complex to Magnitude-Angle参数设立图13 解调信号观测模块2.4.2 调制信号频谱观测模块图14 GMSK调制信号频谱观测模块设立了坐标Y的范围为0到7,X的范围为-FS,FS,Amplitude scaling表达幅度计算,选择一般模式即以V为单位进行计算。但Y坐标标记Y-axis title设为magnitude,dB转换为dB形式。如图15所示。图15 Spectrum Scope参数设立2.4.3眼图观测模块图16 GMSK调制解调信号眼

11、图观测模块Offset(sample)参数表达MATLAB在开始绘制眼图之前应当忽略的抽样点的个数。Symbols per trace表达每径符号数,每条曲线即成为一个“径”。Traces displayed 则是要显示的径数。New traces per display 是每次重新显示的径的数目。如图17所示。图17 Discrete-Time Eye Diagram Scope参数设立2.4.4星座图观测模块图18 GMSK调制解调星座图观测模块星座图展示了信号在空间的排列分步,即在噪声环境下信号之间的最小距离。2.4.5 GMSK系统设计仿真模型图图19 GMSK系统设计仿真模型图3 G

12、MSK系统与MSK系统的性能比较3.1 MSK系统设计最小频移键控(MSK)是恒定包络调制技术,是2FSK的改善调制方式,它具有波形连续,相位稳定,带宽最小并且严格正交的特点。以下是MSK各个系统的模块介绍。其参数设立参照GMSK参数设立。3.1.1 信号发生模块图20 MSK信号产生器3.1.2 调制解调模块图21 MSK调制解调模块3.1.3 误码率计算模块图22 误码率计算模块3.1.4 MSK系统设计仿真模型图图23 MSK系统设计仿真模型图3.2 GMSK系统设计图24 GMSK系统设计图3.3 GMSK调制仿真误码性能的M文献代码图25 GMSK调制仿真误码性能的M文献3.4 GM

13、SK系统与MSK系统的性能比较的M文献代码图26 GMSK系统与MSK系统的性能比较的M文献4 GMSK系统仿真4.1 仿真系统仿真是用模型代替实际系统进行实验。它是在不破坏真实系统环境的情况下,为研究系统的特性而构造并运营这种真实系统的模型的方法。仿真工作的目的就是在合理的构造系统模型的基础上,采用有效的方案对系统的性能进行评估。通常我们可以根据公式进行计算;运用计算机进行波形级的仿真;或者通过用硬件构成样机进行测量来对通信系统性能进行评估。用基于公式的方法可以透彻的了解设计参数和系统的性能之间的关系。但是,除了一些抱负的和过度简化的情况外,仅用解析的方法评估通信系统的性能是非常困难的。根据

14、设计样机时得到的测量数。据评沽性能当然是准确可信的方法。但是,其缺陷是费时、开销大、不灵活。这在初期的设计阶段也显得有些不合适。而将基于计算机仿真的方法用于性能评价,几乎可以按任意具体限度的规定建立模型。并且可以很容易的将数学和经验的模型结合起来,把测量的器件的特性和实际信号都组合到分析和设计当中去。虽然在许多情况下,计算机仿真是系统分析的一种较好的方法,特别是大多数具有随机性的复杂系统无法用准确的数学模型并用解析方法求解时,仿真通常成为解决这类问题的有力工具。但是,仿真在实际应用中还仍然局限性之处。诸如,构造和确认仿真模型需要花费较多的时间:在初步设计中,确认复杂模型,也许会很困难;系统模型中往往有不少随机变量,而在系统仿真时,受到样本量的限制,使得仿真的精度受到限制。这些缺陷,只有通过仔细的选择建模和仿真技术才干予以缓解。本文采用MATLAB的Simulink仿真。4.2 GMSK调制与解调波形图27 GMSK调制信号幅度和相角波形由于调制信号是一个复合信号,不能直接由示波器观测,通过一complex to magnitude-angle模块将调制信号分为幅度和相角两个变量来观测。通过幅度的波形(上)和相角波形(下)验证了GMSK的幅度不变,由相角波形来看,相角连续,与理论符合。所以图形基本对的。由图28中基带信号(上)与解调信号波形(下)比较可得,

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 商业/管理/HR > 商业合同/协议

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号