论数字生命的实在论地位.docx

上传人:m**** 文档编号:558288355 上传时间:2022-09-17 格式:DOCX 页数:8 大小:27.20KB
返回 下载 相关 举报
论数字生命的实在论地位.docx_第1页
第1页 / 共8页
论数字生命的实在论地位.docx_第2页
第2页 / 共8页
论数字生命的实在论地位.docx_第3页
第3页 / 共8页
论数字生命的实在论地位.docx_第4页
第4页 / 共8页
论数字生命的实在论地位.docx_第5页
第5页 / 共8页
点击查看更多>>
资源描述

《论数字生命的实在论地位.docx》由会员分享,可在线阅读,更多相关《论数字生命的实在论地位.docx(8页珍藏版)》请在金锄头文库上搜索。

1、论数字生命的实在论地位2008-10-17 16:25:03来自:sdpfoue(晒母昂油)论数字生命的实在论地位作 者: 李建会(北京师范大学哲学系 北京100875)20世纪的计算革命导致了自伽利略以来又一场新的方法论革命。这场方法论革命的产物之一就是计算机和生物学交叉的前沿学科人工生命的诞生。作为一门学科,人工生命以计算机为工具,力图在计算机或现实世界中创造出具有生命特征的人工实体人工生命。人工生命主要有两种形式:虚拟人工生命(也叫数字版本的人工生命)和现实人工生命(又叫机器人版本的人工生命)。数字人工生命主要采取软件的形式在计算机中创造人工生命;机器人人工生命主要采取硬件的方式在现实世

2、界中创造展示生命特征的人工生命。对于机器人版本的人工生命的实在论地位问题,人们并没有什么疑问。然而,对于数字人工生命的实在论地位问题,人们的认识并不一致。它们是真实的生命吗?它们的世界和我们的世界具有相同的实在论(或本体论)地位吗?本文试图回答这些问题并对一些反对意见进行批判性的分析。一、 数字生命研究的主要内容数字生命的研究可以追溯到图灵(A. Turing)和冯诺伊曼(John von Neumann)。图灵证明生物的胚胎发育可以用计算的方法加以研究。冯诺伊曼则试图用计算的方法描述生物自我繁殖的逻辑形式。到了20世纪70年代和80年代,随着计算机速度的大幅度提高以及个人计算机的普及,在康韦

3、(J. Conwey)等人有关“生命游戏”研究的基础上,兰顿(C. Langton)提出了在计算机虚拟环境中创造展示生命特征的人工生命的思想。1987年9月在美国圣菲研究所的支持下,兰顿主持召开了第一届国际人工生命研讨会,这次会议宣布了一门新的计算机与生物学交叉的前沿学科的诞生。自1987年至今,包括数字生命在内的人工生命研究得到了越来越多的计算机专家和生物学家关注,出现了“生物形态”、 Tierra世界、“Avida”、“阿米巴世界”等数字生命模型。其中一些模型曾是著名科学杂志自然和科学报道的热点。下面我们举两个例子说明数字生命研究的主要内容。1生物形态在首届国际人工生命研讨会上,著名生物学

4、家道金斯(R. Dawkins)展示的一个被称为“生物形态”(Biomorphs)的程序格外引人注目。生物形态从一个默认的简单线条画开始,随后产生若干变异了的线条。程序使这些变异出现在计算机屏幕上,可以使使用者看到。使用者这时扮演大自然的角色:根据自己的喜好,在屏幕上选择最喜欢的图画。程序接着复制这种图画,并使它发生新的变异。使用者接着选择最喜欢的图画使它发生新的复制和变异。多次重复上述突变和选择过程,道金斯最后得到了许多个不相同的生物形态图案。这些生物形态与自然界的许多生物形态有着惊人的相似性。在道金斯之后,皮克奥弗采用了一种新的更为简单的方法创造出更令人惊异的生物形态。皮克奥弗的方法是:在

5、一个二维的平面上选取一个初始点,然后规定产生下一个点的特殊的函数规则。选择不同的初始点,经过大量的迭代后,我们就会得到与真实自然界中的放射虫等生物具有惊人相似性的计算机生物形态(详细规则和图形可参见卡斯蒂1998中文版:45)。2Tierra世界1990年是数字生命发展的一个不平凡的一年,美国热带雨林专家托马斯?雷(Thomas Ray)编写的Tierra(西班牙语意为地球)模型轰动了整个人工生命界。雷宣称,他的Tierra中的“生物”事实上就是“活的”。他把他的模型命名为“地球”,其意就在表明,人们已经在扮演上帝,开始了第二次创世纪!雷在编写他的模型时,与大多数数字生命的模拟研究不同,他的目

6、标不是直接模拟自然的生命,而是制造出完全不同于在我们周围看得见的生命形式。一般地说,生命都具有新陈代谢、复制和进化的能力。在自然界中,生物是由有限的食物供给和有限的生存空间约束的。在Tierra中,“生物”由一系列能够自我复制的机器代码或程序组成,它在计算机中的复制分别受到计算机的存储空间和CPU时间约束。能有效地占有内存空间和利用CPU时间的生物体,将具有更高的适应度,传递到下一代的机会就越大。在Tierra中,计算机的RAM(随机访问存储器)中有一块专门的空间,这个空间中放置了一个“祖先有机体”,该祖先有机体根据它的汇编程序代码中的指令开始复制对它的生存是基本的代码。随着有机体的数目的增加

7、,RAM中的空间减少了,因此有机体为了自己的生存空间开始竞争。为了运行包含在有机体汇编程序代码中的指令,有机体需要计算机中央处理器的一定的时间(CPU时间)。因为每个有机体应该是一个独立的实体,所以,每个有机体都能接近它自己私人的CPU。这一点在并行处理器上是很简单的,但是,因为大多数计算机是串行处理器,所以必须做一些折衷处理。Tierra使用的解决方法是在单个处理器上给每个有机体依次分配“一段”时间。这是任何运行多任务操作系统的计算机使用的相同的方法。这些工作其实并不是真的同时运行的,而是给每个工作分配一定的时间,在这段时间内它进行一定数量的工作,如果在这段时间并没有完成这个工作,它就临时中

8、断,开始运行下一个工作。直到所有的工作运行了一些时间后,第一个工作重新启动,开始新一轮的运行。因此,在Tierra内,某个有机体得到一段时间,在这段时间内,它可以执行固定数目的指令直到它变成休眠状态,然后机会就给予了另外一个有机体。这就在模型中引入了另外一种竞争。那种在较少时间内实现其功能的有机体,将处于优势地位,因为它比它的邻居能够更快地复制,因此它能够在其它的有机体占有空闲的内存空间之前占有更多的内存空间。Tierra的祖先有机体包含80个汇编程序指令,包括一个扩展的代码,其中有产生子代有机体的方法。因为每一个由汇编程序指令编码的行动具有一定的执行错误的概率,因此进化是可能的。为了避免快速

9、复制的有机体快速填满所有可用的内存空间,Tierra包含一个“收割器”功能,以模拟自然“死亡”。一旦群体达到某一临界水平,“收割器”就开始消灭有机体。一般情况下,有机体一出生,它就进入收割器队列。当收割器功能判定到了要求有牺牲者的时候,它总是清除队列前面的有机体。产生错误的有机体被提到队列的前面,而有效地完成行动的有机体则被拉回来。雷在运行它的Tierra时吃惊地发现,他的电子世界的的确确生出许多“生物”。开始时只有一个祖先生物,但经过526万条指令的计算之后,仿佛寒武纪生物大爆发在区区数小时内发生了。这时,在Tierra虚拟世界中游动的是366种不同大小的生物。在运行25.6亿条指令后,11

10、80种不同大小的生物产生了。在新产生的生物中,不但出现了一些寄生生物,而且也出现了超寄生生物(靠其它寄生者生活的寄生者),甚至超-超-寄生生物。与真实世界中的生命演化类似,Tierra生物最终产生了对寄生生物具有免疫能力的生物。Tierra中也演化出了一些长期进化的特征,间断平衡现象在Tierra模型中也被观察到。另外,在Tierra世界中甚至可能演化出一些社会性行为(Ray, 1991)。总之,差不多自然演化过程中的所有特征,以及与地球生命相近的各类功能行为组织,全都出现在Tierra中。雷的实验是限制在单个的计算机中的,由于这台计算机的CPU和内存规定了Tierra的边界,因此可能产生的演

11、化生物的种类受到了一定程度的限制。雷已经提出在国际互联网上建立Tierra,这样就可以利用网上计算机中闲置的空间,作为Tierra资源的一部分。雷期望在这种新的条件下,他的祖先生物会演化出更多的物种和更多的存活和繁殖策略。二、虚拟的真实性前面我们提到的道金斯的生物形态,皮克奥弗的放射虫,雷的Tierra等,都是计算机根据简单的规则产生的。如果根据人们建立科学模型的一些标准,比如简单性,清晰性,无偏见性和易操作性等来衡量,那么,“它们的完美性不容置疑。毕竟,几乎没有哪个规则能够比前面皮克奥弗用来产生放射虫所采用的规则更简单、更清晰(卡斯蒂1998中文版:49)。” 根据这种完美性,我们能说它们可

12、以作为真实世界生物体形式的一种模型吗?问题似乎并不那么简单。虽然这些计算机形态与我们今天在地球上看到的真实生物在某些方面非常相似,但也有很多差异。真实生物体是三维的对象,有丰富的内部结构,然而,生物形态仅仅是二维创造物,根本没有体积。而且,生物形态实际上什么都不做,它们仅仅是数学对象。所以,当这些计算机创造物面对“可信度”问题时,“无一幸免地遭到了失败。很难使人们相信,像放射虫的硅形式这样一个简单三次方程模型,与大自然用来创建真实世界放射虫的规则极为相近(同上)。”但是,如果我们换一种视角,即是说,如果我们不考虑这些人工生命模型与真实世界的联系,而是单从计算机内部来看模型,那情况会是怎样的呢?

13、这时,我们会发现,模型本身是计算机内部的一种符号系统,它们按着规定的规则在计算机内部活动和表现。以皮克奥弗的放射虫为例,如果我们只是从计算机硅世界本身来看它,那么,它就不再是放射虫的模型,而是一种计算机生物形态自身的定义。“在那个人工世界中,产生放射虫的规则就是生命(同上书:50)。”这就是说,如果我们放弃对人工生命模型与真实生命的联系的关注,而去思考作为一个硅世界的人工生命系统,我们前面讲到的人工生命例子,从道金斯的生物形态,一直到雷的“Tierra世界”,就都成为计算机硅世界中的“居民”,而不仅仅是现实生命世界的模型。这个“硅世界”中的“居民”事实上都是真实的存在。很多人可能会觉得这个结论

14、完全不可思议。但正如卡斯蒂所说,“那仅仅是一种偏见。根本没有理由认为,我们所熟悉的世界拥有任何享有特权的本体状态,并且比我们用硅而不是体外创建的世界更加真实。如果从计算机内部,而不是从通常的外部的观点看它们的话,那么,这些计算机世界与我们自己的真实世界具有相同的真实性(卡斯蒂1998中文版:51)。”三、数字生命实在性的理论论证计算机在刚产生时,主要目的是为了完成工作量巨大的数值计算。然而今天我们知道,计算机不仅可以计算,而且可以创造;计算机不只是一个数字“捣弄机”,而且是一种创造新世界的工具。在计算机产生之前,我们被限制在一个世界中,即我们真实的地球世界。而今天,计算机的产生和发展已经使我们

15、有可能创建许多可供选择的世界,人工生命世界就是这样的世界之一。这种关于计算机的全新观点不可避免地提出了一些关于实在的基本的物理学和哲学问题。拉斯穆森(Steen Rasmussen)就认为,计算机新工具的出现,不仅可以使我们从新的视角提出问题,而且可以使我们从新的视角回答这些问题。他说,“我相信,我们理解生命的努力迫使我们发展一个新的关于信息、生命、实在和物理过程关系的概念(Rasmussen 1991: 768)。”拉斯穆森曾尝试对数字生命的实在性问题进行理论论证。强人工生命,即相信数字生命是真实的生命的支持者的思想在拉斯穆森这里得到了最鲜明的反映。根据图灵,创造通用的计算机是可能的。而根据兰顿(1991)和弗里德金(E. Fredkin)(1990),物理世界支持通用的计算,物理事物的过程本身实际上也可以被看作是计算。所以,拉斯穆森得出了他的第一个逻辑前提:公理1:图灵机层次上的通用计算机可以模拟任何物理过程(物理的丘奇-图灵命题)。从冯诺伊曼到兰顿,人工生命支持者的一个核心思想是:生命的本质是形式而不是具体的物质实体;是物质组织的性质,而不是物质事物本身。因此,我们可以得出第二条公理:公理2:生命是一种物理过程。从公理1和公理2,我们可以得出如下一条推论:推论1:因为图灵机可以模拟任何物理过程,而生命是一种物理过程,所以,用通用图灵机模拟生命过程是完全可能的。我们知道,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲 > 社会民生

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号