《小学奥数专题之-几何专题》由会员分享,可在线阅读,更多相关《小学奥数专题之-几何专题(17页珍藏版)》请在金锄头文库上搜索。
1、精选优质文档-倾情为你奉上小学奥数几何专题1、()如图,已知四边形ABCD中,AB=13,BC=3,CD=4,DA=12,并且BD与AD垂直,则四边形的面积等于多少? 思 路:显然四边形ABCD的面积将由三角形ABD与三角形BCD的面积求和得到三角形ABD是直角三角形,底AD已知,高BD是未知的,但可以通过勾股定理求出,进而可以判定三角形BCD的形状,然后求其面积这样看来,BD的长度是求解本题的关键 解:由于BD垂直于AD,所以三角形ABD是直角三角形而AB=13,DA=12,由勾股定理,BD =ABAD=1312=25=5,所以BD=5三角形BCD中BD=5,BC=3,CD=4,又3十4=5
2、,故三角形BCD是以BD为斜边的直角三角形,BC与CD垂直那么: =+=1252+432=36 即四边形ABCD的面积是362、()如图四边形土地的总面积是48平方米,三条线把它分成了4个小三角形,其中2个小三角形的面积分别是7平方米和9平方米那么最大的一个三角形的面积是_平方米;79分析:剩下两个三角形的面积和是 48-7-9=32 ,是右侧两个三角形面积和的2 倍,故左侧三角形面积是右侧对应三角形面积的2倍,最大三角形面积是 92=18。3()将下图中的三角形纸片沿虚线折叠得到右图,其中的粗实线图形面积与原三角形面积之比为2:3。已知右图中3个阴影的三角形面积之和为1,那么重叠部分的面积为
3、多少? 思 路:小升初中常把分数,百分数,比例问题处理成份数问题,这个思想一定要养成。 解:粗线面积:黄面积=2:3 绿色面积是折叠后的重叠部分,减少的部分就是因为重叠才变少的,这样可以设总共3份,后来粗线变2份,减少的绿色部分为1份,所以阴影部分为2-1=1份,4、()求下图中阴影部分的面积: 【解】如左下图所示,将左下角的阴影部分分为两部分,然后按照右下图所示,将这两部分分别拼补在阴影位置。可以看出,原题图的阴影部分等于右下图中AB弧所形成的弓形,其面积等于扇形OAB与三角形OAB的面积之差。所以阴影面积:444-442=4.56。18,215、()下图中阴影部分的面积是多少厘米2?分析与
4、解:本题可以采用一般方法,也就是分别计算两块阴影部分面积,再加起来,但不如整体考虑好。我们可以运用翻折的方法,将左上角一块阴影部分(弓形)翻折到半圆的右上角(以下图中虚线为折痕),把两块阴影部分合在一起,组成一个梯形(如下图所示),这样计算就很容易。本题也可看做将左上角的弓形绕圆心旋转90,到达右上角,得到同样的一个梯形。6、()如图6-1,每一个小方格的面积都是l平方厘米,那么用粗线围成的图形的面积是多少平方厘米?【分析与解】 方法一:正方形格点阵中多边形面积公式:(N+-1)单位正方形面积,其中N为图形内格点数,L为图形周界上格点数有N=4,L=7,则用粗线围成图形的面积为:(4+-1)1
5、=6.5(平方厘米)方法二:如下图,先求出粗实线外格点内的图形的面积,有=32=1.5, =22=1,=22=1,=22=1,=22=l,=22=1,还有三个小正方形,所以粗实线外格点内的图形面积为1.5+l+1+1+1+1+3=9.5,而整个格点阵所围成的图形的面积为16,所以粗线围成的图形的面积为:16-9.5=6.5平方厘米7(),已知四边形ABCD和CEFG都是正方形,且正方形ABCD的边长为10厘米,那么图中阴影三角形BFD的面积为多少平方厘米?【分析与解】 方法一:因为CEFG的边长题中未给出,显然阴影部分的面积与其有关设正方形CEFG的边长为x,有:又阴影部分的面积为:(平方厘米
6、).方法二:连接FC,有FC平行与DB,则四边形BCFD为梯形 有DFB、DBC共底DB,等高,所以这两个三角形的面积相等,显然,DBC的面积(平方厘米) 阴影部分DFB的面积为50平方厘米8、()用棱长是1厘米的正方块拼成如下图所示的立体图形,问该图形的表面积是多少平方厘米?方法一:思 路:整体看待面积问题。解:不管叠多高,上下两面的表面积总是33;再看上下左右四个面,都是23+1, 所以,总计92+74=18+28=46。 方法二:思 路:所有正方体表面积减去粘合的表面积解:从图中我们可以发现,总共有14个正方体,这样我们知道总共的表面积是:614=64,但总共粘合了18个面,这样就减少了
7、181=18,所以剩下的表面积是64-18=46。方法三:直接数数。思 路:通过图形,我们可以直接数出总共有46个面,每个面面积为1,这样总共的表面积就是46。9、()一个圆柱形的玻璃杯中盛有水,水面高2.5cm,玻璃杯内侧的底面积是72cm2,在这个杯中放进棱长6cm的正方体铁块后,水面没有淹没铁块,这时水面高多少厘米?解:水的体积为722.5=180(cm3),放入铁块后可以将水看做是底面积为72-66=32(cm2)的柱体,所以它的高为18032=5(cm)。10、()有一个棱长为1米的立方体,沿长、宽、高分别切二刀、三刀、四刀后,成为60个小长方体(见左下图).这60个小长方体的表面积
8、总和是_平方米. (06年三帆中学考试题) 【解】原正方体表面积:1166(平方米),一共切了2349(次),每切一次增加2个面:2平方米。所以表面积: 62924(平方米)二:提高题11、()图是由正方形和半圆形组成的图形。其中P点为半圆周的中点,Q点为正方形一边的中点。已知正方形的边长为10,那么阴影部分面积是多少?(取3.14.)方法一:阴影面积的“加减法”。思 路:因为阴影部分面积不是正规图形,所以通过整个面积减去空白部分面积来求解。 解:过P点向AB作垂线,这样空白部分面积分成上面的三角形和下面的梯形,这样阴影面积=整个面积-空白面积=(正方形ABCD+半圆)(三角形+梯形) =(1
9、010+552)-1552+(5+15)52 =51.75总 结:这种方法是小升初中最常用的方法,一定要学会这种处理思路。方法二:面积的“加减法”和“切割法”综合运用思 路:出现正方形,出现弧线时,注意两个考点:1.半叶形 2。1/4圆,所以我们可以先把面积补上再减去补上的面积解:S1=正方形-1/4圆=55-1/455上面阴影面积=三角形APE-S1=1552-55-1/455下面阴影面积=三角形QPF-S2=所以阴影面积=(1552-55-1/455)+(1052-55-1/455)=51.75方法三:面积的“切割法”思 路:出现正方形,出现弧线时,注意两个考点:1.半叶形 2。1/4圆,
10、这样可以考虑把阴影面积切成几个我们会算的规则图形 解:半叶形S1=正方形-1/4圆=55-1/455上面阴影面积=三角形ADP+S1=1052+551/455下面阴影面积=三角形QPC+S2=552+551/455阴影面积=(1052+551/455)+(552+551/455)=51.7512、()如图,ABCG是47的长方形,DEFG是210的长方形,那么,三角形BCM的面积与三角形DCM的面积之差是多少? 方法一:思 路:公共部分的运用,这是小升初的常用方法,熟练找出公共部分是解题的关键。解: GC=7,GD=10推出HE=3;BC=4,DE=2阴影BCM面积-阴影MDE面积=(BCM面
11、积+空白面积)-(MDE面积+空白面积)=三角形BHE面积-长方形CDEH面积=362-32=3总 结:对于公共部分要大胆的进行处理,这样可以把原来无关的面积联系起来,达到解题的目的.拓 展:如图,已知圆的直径为20,S1-S2=12,求BD的长度?方法二:思 路:画阴影的两个三角形都是直角三角形,而BC和DE均为已知的,所以关键问题在于求CM和DM这两条线段之和CD的长是易求的,所以只要知道它们的长度比就可以了,这恰好可以利用平行线BC与DE截成的比例线段求得解: GC=7,GD=10 知道CD=3;BC=4, DE=2 知道BC:DE=CM:DM 所以CM=2,MD=1。阴影面积差为:42
12、2-122=3方法三:连接BD S S =SS =(3423)2=313()如图所示,在三角形ABC中,DC3BD,DEEA。若三角形ABC的面积是1,则阴影部分的面积是多少?方法一:思 路:阴影面积是两个不在一起的图形,我们先要通过等量代换,把两个图形拼成一个整体解:连接FD,因为AE=DE,所以S1=S3,S2=S4,S1+S2=S3+S4,即三角形AFC=三角形FCD,阴影面积等于S3+S4的面积。 又因为DC3BD,三角形FDC=3三角形BDF,这样我们就可以设三角形DFB为1份,则三角形FDC=3份,三角形AFC=三角形FCD=3份,这样总共面积分成7份,所以阴影面积为173=3/7
13、 方法一:14、()如图,在ABC中,AD是AC的三分之一,AE是AB的四分之一,若AED的面积是2平方厘米,那么ABC的面积是多大?分析连结EC,如图,因为AC3AD,AED 与AEC中AD,AC边上的高相同,所以AEC的面积是AED面积的3倍,即AEC面积是6平方厘米,用同样方法可判断ABC的面积且AEC面积的四倍,所以ABC的面积是6424(平方厘米)。15()从一块正方形木板锯下宽为米的一个木条以后,剩下的面积是平方米问锯下的木条面积是多少平方米?【分析与解】 我们画出示意图(a),则剩下的木块为图(b),将4块剩下的木块如下拼成一个正方形得到图(c)我们称AB为长,AD为宽,有长与宽的差为,所以图(c)中心的小正方形边长为,于是大正方形AEHK的面积为4+=,所以AK长为 即,长+宽=,已知:长-宽=,得长=,于是锯去部分的木条的面积为=1(平方米)16、()将三角形ABC的BA边延长1倍到D;CB边延长2倍到E,AC边延长3倍到F,如果三角形ABC的面积等于1,那么三角形DEF的面积是_。分析 如图,连接CD、BF,则三角形ADC的面积 三角形ABC的面积 1;三角形BDE的面积 三角形BCD的面积2 (1+1)2 4;三角形CDF的面积 三角形ADC的面积3 3;三角形B