场效应管(FET)的工作原理总结.doc

上传人:ni****g 文档编号:557979540 上传时间:2022-09-15 格式:DOC 页数:16 大小:275.51KB
返回 下载 相关 举报
场效应管(FET)的工作原理总结.doc_第1页
第1页 / 共16页
场效应管(FET)的工作原理总结.doc_第2页
第2页 / 共16页
场效应管(FET)的工作原理总结.doc_第3页
第3页 / 共16页
场效应管(FET)的工作原理总结.doc_第4页
第4页 / 共16页
场效应管(FET)的工作原理总结.doc_第5页
第5页 / 共16页
点击查看更多>>
资源描述

《场效应管(FET)的工作原理总结.doc》由会员分享,可在线阅读,更多相关《场效应管(FET)的工作原理总结.doc(16页珍藏版)》请在金锄头文库上搜索。

1、结型场效应管的工作原理N沟道和P沟道结型场效应管的工作原理完全相同,现以N沟道结型场效应管为例,分析其工作原理。N沟道结型场效应管工作时,需要外加如图1所示的偏置电压,即在栅-源极间加一负电压(vGS0),使栅-源极间的P+N结反偏,栅极电流iG0,场效应管呈现很高的输入电阻(高达108W左右)。在漏-源极间加一正电压(vDS0),使N沟道中的多数载流子电子在电场作用下由源极向漏极作漂移运动,形成漏极电流iD。iD的大小主要受栅-源电压vGS控制,同时也受漏-源电压vDS的影响。因此,讨论场效应管的工作原理就是讨论栅-源电压vGS对沟道电阻及漏极电流iD的控制作用,以及漏-源电压vDS对漏极电

2、流iD的影响。转移特性:在uDS一定时, 漏极电流iD与栅源电压uGS之间的关系称为转移特性。 在UGS(off)uGS0的范围内, 漏极电流iD与栅极电压uGS的关系为2) 输出特性:输出特性是指栅源电压uGS一定, 漏极电流iD与漏极电压uDS之间的关系。1vGS对沟道电阻及iD的控制作用图2所示电路说明了vGS对沟道电阻的控制作用。为便于讨论,先假设漏-源极间所加的电压vDS=0。当栅-源电压vGS=0时,沟道较宽,其电阻较小,如图2(a)所示。当vGS0,且其大小增加时,在这个反偏电压的作用下,两个P+N结耗尽层将加宽。由于N区掺杂浓度小于P+区,因此,随着|vGS| 的增加,耗尽层将

3、主要向N沟道中扩展,使沟道变窄,沟道电阻增大,如图2(b)所示。当|vGS| 进一步增大到一定值|VP| 时,两侧的耗尽层将在沟道中央合拢,沟道全部被夹断,如图2(c)所示。由于耗尽层中没有载流子,因此这时漏-源极间的电阻将趋于无穷大,即使加上一定的电压vDS,漏极电流iD也将为零。这时的栅-源电压称为夹断电压,用VP表示。 上述分析表明,改变栅源电压vGS的大小,可以有效地控制沟道电阻的大小。若同时在漏源-极间加上固定的正向电压vDS,则漏极电流iD将受vGS的控制,|vGS|增大时,沟道电阻增大,iD减小。上述效应也可以看作是栅-源极间的偏置电压在沟道两边建立了电场,电场强度的大小控制了沟

4、道的宽度,即控制了沟道电阻的大小,从而控制了漏极电流iD的大小。2vDS对iD的影响设vGS值固定,且VPvGSVT且为一确定值时,漏-源电压vDS对导电沟道及电流iD的影响与结型场效应管相似。漏极电流iD沿沟道产生的电压降使沟道内各点与栅极间的电压不再相等,靠近源极一端的电压最大,这里沟道最厚,而漏极一端电压最小,其值为vGD=vGS - vDS,因而这里沟道最薄。但当vDS较小(vDSvGSVT)时,它对沟道的影响不大,这时只要vGS一定,沟道电阻几乎也是一定的,所以iD随vDS近似呈线性变化。随着vDS的增大,靠近漏极的沟道越来越薄,当vDS增加到使vGD=vGS-vDS=VT(或vDS

5、=vGS-VT)时,沟道在漏极一端出现预夹断,如图2(b)所示。再继续增大vDS,夹断点将向源极方向移动,如图2(c)所示。由于vDS的增加部分几乎全部降落在夹断区,故iD几乎不随vDS增大而增加,管子进入饱和区,iD几乎仅由vGS决定。3特性曲线和电流方程N沟道增强型MOS管的输出特性曲线如图1(a)所示。与结型场效应管一样,其输出特性曲线也可分为可变电阻区、饱和区、截止区和击穿区几部分。转移特性曲线如图1(b)所示,由于场效应管作放大器件使用时是工作在饱和区(恒流区),此时iD几乎不随vDS而变化,即不同的vDS所对应的转移特性曲线几乎是重合的,所以可用vDS大于某一数值(vDSvGS-V

6、T)后的一条转移特性曲线代替饱和区的所有转移特性曲线,与结型场效应管相类似。在饱和区内,iD与vGS的近似关系式为式中IDO是vGS=2VT时的漏极电流iD。MOS管的主要参数与结型场效应管基本相同,只是增强型MOS管中不用夹断电压VP,而用开启电压VT表征管子的特性。从结构上看,N沟道耗尽型MOS管与N沟道增强型MOS管基本相似,其区别仅在于栅源极间电压vGS=0时,耗尽型MOS管中的漏源极间已有导电沟道产生,而增强型MOS管要在vGSVT时才出现导电沟道。原因是制造N沟道耗尽型MOS管时,在SiO2绝缘层中掺入了大量的碱金属正离子Na+或K+(制造P沟道耗尽型MOS管时掺入负离子),如图1

7、(a)所示,因此即使vGS=0时,在这些正离子产生的电场作用下,漏源极间的P型衬底表面也能感应生成N沟道(称为初始沟道),只要加上正向电压vDS,就有电流iD。如果加上正的vGS,栅极与N沟道间的电场将在沟道中吸引来更多的电子,沟道加宽,沟道电阻变小,iD增大。反之vGS为负时,沟道中感应的电子减少,沟道变窄,沟道电阻变大,iD减小。当vGS负向增加到某一数值时,导电沟道消失,iD趋于零,管子截止,故称为耗尽型。沟道消失时的栅-源电压称为夹断电压,仍用VP表示。与N沟道结型场效应管相同,N沟道耗尽型MOS管的夹断电压VP也为负值,但是,前者只能在vGS0,VPvGS0的情况下均能实现对iD的控

8、制,而且仍能保持栅-源极间有很大的绝缘电阻,使栅极电流为零。这是耗尽型MOS管的一个重要特点。图1(b)、(c)分别是N沟道和P沟道耗尽型MOS管的代表符号。在饱和区内,耗尽型MOS管的电流方程与结型场效应管的电流方程相同,即砷化镓金属-半导体场效应管砷化镓(GaAs)是由化学元素周期表中族元素镓和族元素砷二者组成的单晶化合物,因此,它又叫做-化合物,是一种新型半导体材料。它的特性与周期表中族元素硅类似,但重要的差别之一是,GaAs的电子迁移率比硅约大510倍。用GaAs制造有源器件时,具有比硅器件快得多的转换速度(例如在截止、饱和导通间变化)。高速砷化镓三极管正被用于微波电路、高频放大和高速数字逻辑电路中。由砷化镓制造的场效应管叫做金属-半导体场效应管(MES-FET),它具有速度高等优点,应用广泛。N沟道MESFET的物理结构和电路符号分别如图1(a

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 医学/心理学 > 基础医学

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号