双分子荧光互补.docx

上传人:公**** 文档编号:557773131 上传时间:2023-10-16 格式:DOCX 页数:7 大小:49.23KB
返回 下载 相关 举报
双分子荧光互补.docx_第1页
第1页 / 共7页
双分子荧光互补.docx_第2页
第2页 / 共7页
双分子荧光互补.docx_第3页
第3页 / 共7页
双分子荧光互补.docx_第4页
第4页 / 共7页
双分子荧光互补.docx_第5页
第5页 / 共7页
点击查看更多>>
资源描述

《双分子荧光互补.docx》由会员分享,可在线阅读,更多相关《双分子荧光互补.docx(7页珍藏版)》请在金锄头文库上搜索。

1、双分子荧光互补开放分类:生物技术科学编辑词条分享 新知社 新浪微博 人人网 腾讯微博 移动说客 网易微博 开心001 天涯 MSN 本词条由小破孩有些创建,共有2位协作者编辑了4次。最新协作者:51541489,小破孩有些。请用一段简单的话描述该词条,马上添加摘要。 目录 1 BiFC技术原理 2 BiFC技术缘起 3 BiFC技术研究进展 4 BiFC技术的优缺点 5 BiFC技术的应用 1 BiFC技术原理 2 BiFC技术缘起 o 2.1 蛋白质片段互补技术 o 2.2 BiFC的提出 3 BiFC技术研究进展 o 3.1 各类BiFC系统 o 3.2 BiFC系统的扩展 4 BiFC技

2、术的优缺点 5 BiFC技术的应用 双分子荧光互补 - BiFC技术原理将荧光蛋白在某些特定的位点切开,形成不发荧光的N和C端2个多肽,称为N片段(N-fragment)和C片段(C-fragment)。这2个片段在细胞内共表达或体外混合时,不能自发地组装成完整的荧光蛋白,在该荧光蛋白的激发光激发时不能产生荧光。但是,当这2个荧光蛋白的片段分别连接到1组有相互作用的目标蛋白上,在细胞内共表达或体外混合这2个融合蛋白时,由于目标蛋白质的相互作用,荧光蛋白的2个片段在空间上互相靠近互补,重新构建成完整的具有活性的荧光蛋白分子,并在该荧光蛋白的激发光激发下,发射荧光。简言之,如果目标蛋白质之间有相互

3、作用,则在激发光的激发下,产生该荧光蛋白的荧光。反之,若蛋白质之间没有相互作用,则不能被激发产生荧光。 双分子荧光互补 - BiFC技术缘起 蛋白质片段互补技术 蛋白质片段互补BiFC起源于蛋白质片段互补技术。所谓蛋白质片段互补技术(protein fragment complementation)是将某个功能蛋白切成2段,分别与另外2种目标蛋白相连,形成2个融合蛋白。在1个反应体系中,2个目标蛋白的相互作用使得2个功能蛋白质片段靠近、互补,并重建功能蛋白质的活性,通过检测功能蛋白质的活性来判断目标蛋白质的相互作用。已经尝试用于该目的的功能蛋白包括泛素蛋白(ubiquitin),-半乳糖苷酶(

4、-galactosidase),二 氢叶酸还原酶(dihydrofolate reductase),-内酰胺酶(-lactamase),以及几种荧光素酶,如萤火虫荧光素酶(firefly luciferase),海肾萤光素酶(renilla luciferase),甲虫荧光素酶(beetle luciferase)和长腹水蚤荧光素酶(gaussia luciferase)。BiFC沿袭了蛋白质片段互补的技术原理。所不同的是蛋白质片段互补技术需要重建断裂蛋白的活性,蛋白活性由底物反应所体现,通过检测底物变化,来判断蛋白质的相互作用。而基于断裂荧光蛋白的BiFC技术则是利用荧光蛋白本身的一个特点,

5、即荧光蛋白活性被重建后,能自我催化形成荧光活性中心,重新恢复荧光蛋白的特征光谱,自身作为报告蛋白,直接反映蛋白质之间的相互作用。因此技术过程更加简单,结果更加直观。 绿色荧光蛋白(GFP)及外源片段插入和循环排列实验GFP是由238个氨基酸残基组成的1个单体蛋白,其三维结构是由11个反向平行的折叠环绕成1个桶状结构,1个较长的2螺旋从桶的中心穿过,这些折叠和螺旋之间通过Loop环链接起来。荧光蛋白的发色团位于桶中心的螺旋上,由荧光蛋白通过自体催化,将3个氨基酸残基Ser652Tyr662 Gly67进行环化,氧化后形成。由于GFP结构致密,不易被蛋白酶水解,且在厌氧细胞以外的任何细胞中都能自我

6、催化发射荧光,所以很快被应用于生命科学研究,将其融合于形形色色的蛋白上,用来研究蛋白质的功能。最初将GFP融合到目标蛋白的方式主要有3种,即N端融合、C端融合、或将整个荧光蛋白插入到目标蛋白中,这3种方式中,GFP蛋白都是完整的。1998年,Abedi等首次尝试了GFP的另类使用方式,即将目标短肽插入到GFP中。他们从GFP的Loop区域选择了10个位点,将20个左右氨基酸组成的短肽分别插入,通过能否重新发射GFP的特征光谱,来筛选合适的插入位点(Fig12A)。结果发现,在氨基酸Gln1572Lys158以及Glu1722Asp173之间插入短肽时,GFP仍然能发射荧光。于是,他们以GFP作

7、为支架蛋白(scaffold protein),用其Gln1572Lys158(此位点较Glu1722Asp173位点更能适应外源短肽)位点来筛选短肽库。1999年,Baird等在对GFP的突变体增强型青色荧光蛋白(ECFP)进行半随机突变时,偶尔发现在一个突变体的Y145位插入了6个新的氨基酸残基FKTRHN,但是该突变体仍然发射荧光。这个偶然的发现表明,GFP在某些位点插入外源片段时,仍能自发组装形成GFP的完整的三维结构。于是他们设计了1个循环排列(circular permutation)实验,来验证GFP上还有哪些位点适合插入外源片段。循环排列方法通常被用来评估1个蛋白质的结构元件的

8、功能,比如铰链区(hinge regions),松散的环(Loops)以及结构域间或亚基间的界面对于蛋白质的折叠和稳定性的作用。循环排列是将蛋白质的N端和C端通过1个短肽(linker)连接起来,形成1个环状的中间态,然后在另外的位置将蛋白质切开,形成新的N端和C端。重新排列后的某些突变体蛋白质在体内或体外仍能形成类似该蛋白质的天然结构,并具有野生型蛋白质的活性。在对GFP及其突变体的循环排列研究中,将GFP的cDNA通过1个编码6个氨基酸短肽(GGTGGS)的核苷酸序列连成一个环状的cDNA,然后从环状cDNA的任何地方切开,形成1个编码新N端和C端的蛋白质阅读框,插入到质粒中。在大肠杆菌中

9、筛选能发射GFP荧光的单菌落。通过这种循环排列,他们发现有10个位点重排的GFP突变体仍能正确折叠并发射荧光。这10个位点既有存在于Loop区域的,也有处于折叠片上的(Fig12B)。这些位点被认为是可以插入外源片段的,并在部分位点得到验证。比较上述实验可以看出,2个实验室所得出的可插入位点大致相符,但后者(Baird等)的实验更加精细,他们将GFP的任何1个位点都进行了筛选。从上述实验可以看出,插入外源片段的位点都位于氨基酸142位点以后,即发色团所在的螺旋之后的第3个折叠片之后。由此可见,发色团所在的N端的大部分区域对于荧光蛋白的正确折叠及保护活性中心很重要。从序列重排实验的结果还得到一个

10、启示:既然重排后的突变体荧光蛋白仍然具有荧光活性,那么新形成的N端和C端也是可以融合外源蛋白质的。 荧光蛋白质的外源片段插入及循环排列实验为BiFC奠定了基础,BiFC在拆分GFP蛋白时所选用的位点也都在GFP循环排列所鉴定的位点附近或其上。 BiFC的提出 BiFC2000年,Ghosh等首次报道了1个借助反向平行的亮氨酸拉链介导的GFP重组实验。该实验选用了易被检测的GFP蛋白,将其从氨基酸Gln1572Lys158位切开,把1组反向平行的亮氨酸拉链分别连接到GFP的N端和C端。如Fig13所示,将1个亮氨酸拉链(NZ)通过1个连接肽连接到GFP的N片段的第157个氨基酸上,另1个亮氨酸拉

11、链(CZ)连接到C端片段的第158位氨基酸。在体外和体内(大肠杆菌BL21中)分别证明了,只有借助亮氨酸拉链的相互作用,GFP的2个多肽片段才能够靠近,重新形成完整的GFP蛋白,并发射荧光。任何1个单独的融合多肽或任何1组只包含1个或零个融合多肽的组合均不能将绿色荧光蛋白的N端和C端片段重组成完整的GFP蛋白结构,亦不能发射荧光。2年之后,Hu等首次提出BiFC概念。他们将1个GFP的突变子增强型黄色荧光蛋白(EYFP)从不同位点切开,用1组相互作用的同向平行的亮氨酸拉链(多肽bFos和bJun)融合到切开的GFP蛋白的N片段和C片段,分别在大肠杆菌中共表达不同组合的融合多肽。他们发现,当EF

12、YP从氨基酸Ala1542Asp155间切时开时所构建的1组融合多肽,能够在细菌或细胞中产生GFP的荧光。于是,BiFC技术建立起来。 双分子荧光互补 - BiFC技术研究进展 各类BiFC系统 近几年,BiFC技术迅速发展。2003年,Hu和Kerppola系统地研究了GFP及其3个不同颜色的突变体蓝色荧光蛋白(BFP),青色荧光蛋白(CFP)以及黄色荧光蛋白(YFP)的BiFC现象。他们把GFP,BFP,CFP,YFP从氨基酸155位和173位分别切开,把切开的N端片段用其颜色和位点命名,如NY155,NG173等。同样命名原则用于C端片段,如CY155,CG155等。用2条碱性的亮氨酸拉

13、链短肽bJun和bFos筛选出不同片段组合的BiFC系统,这些双分子荧光互补系统的特征波长有7种,即组合YN155PYC155和YN173PYC173的特征波长为515P527nm;YN155PCC155和YN173PCC155的特征波长为503P515nm;CN155PCC155和CN173PCC155,452P478nm;组合GN173PYC173,513P521nm;GN173PCC155,488P512nm;CN173PYC173,466P497nm;BN172PCC155,这一组未给出特征光谱,但是从文章中可以看出,这一组和上述组合的激发及发射光谱不同。从C端的173位切开上述4中荧

14、光蛋白所产生的氨基酸序列完全相同,因此YC173也可以是(G,B,C)C173。2006年,Shyu等将GFP的另外3个突变体,黄色的venus和citrine,青色的cerulean发展成可以用于生理条件下的BiFC系统。这3个蛋白也是从155或173位氨基酸切开,用bJun和bFos筛选出下列组合可以形成BiFC 系统,即citrine N155Pcitrine C155,citrine N173Pcitrine C173,venus N155Pvenus C155 ,venus N173Pvenus C173 , venus N173PYC155 , citrine N173Pvenus

15、 C155 , citrine N173PYC155 , venus N173PCC155 , cerulean N173Pvenus C155 , cerulean N173PCC155 ,这些组合的特征波长见Table 1。为了更好地实现多组蛋白质相互作用的同时检测,2006年Jach等将他们自己突变的1个红色单体荧光蛋白mRFP2Q66T发展成1个红色的双分子荧光互补系统。他们把mRFP2Q66T从氨基酸序列的154和168位点切开,筛选了2个片段组合,即mRFP2Q66TN168PmRFP2Q66TC169和mRFP2Q66TN168PmRFP2Q66TC155,均可形成BiFC系统。

16、最近,Fan等将1个特征波长更长的第二代单体荧光蛋白mCherry从159位切开,形成片段组合mCherryN159PmCherryC160,构建了1个长波长的红色BiFC系统。 BiFC系统的扩展 目前,BiFC系统不仅可以直观地检测到1对蛋白质在体内或体外的相互作用,也可以由不同颜色的BiFC系统在同1个细胞中共用实现多组蛋白质 相互作用的同时检测。2008年,Shyu等又将BiFC技术和FRET技术结合起来,建立了基于双分子荧光互补的荧光共振能量转移技术(BiFC-FRET),BiFC2FRET采用了青色的荧光蛋白cerulean和1个黄色的基于venus的BiFC系统联用,能同时检测3个蛋白之间的相互作

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 生活休闲 > 社会民生

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号