《2023-2024学年江苏省南通市如东中学、栟茶中学数学高一下期末监测模拟试题含解析》由会员分享,可在线阅读,更多相关《2023-2024学年江苏省南通市如东中学、栟茶中学数学高一下期末监测模拟试题含解析(17页珍藏版)》请在金锄头文库上搜索。
1、2023-2024学年江苏省南通市如东中学、栟茶中学数学高一下期末监测模拟试题注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1已知点均在球上,若三棱锥体积的最大值为,则球的体
2、积为ABC32D2已知向量,若,则( )A1B2C3D43 数列an的通项公式是an(n2),那么在此数列中()Aa7a8最大Ba8a9最大C有唯一项a8最大D有唯一项a7最大4若,均为锐角,且,则等于( )ABCD5在直角梯形中,则梯形绕着旋转而成的几何体的体积为( )ABCD6若直线与圆相切,则( )ABCD7某市举行“精英杯”数学挑战赛,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校所有学生的成绩均在区间内,其频率分布直方图如图所示,该校有130名学生获得了复赛资格,则该校参加初赛的人数约为( )A200B400C2000D40008已知的定义域为,若对于,分别为
3、某个三角形的三边长,则称为“三角形函数”,下例四个函数为“三角形函数”的是( )A;B;C;D9如图,在中,点在边上,且,则等于( )ABCD10若直线与圆交于两点,关于直线对称,则实数的值为( )ABCD二、填空题:本大题共6小题,每小题5分,共30分。11若,则_.12设变量满足条件,则的最小值为_13已知双曲线:的右顶点为,以为圆心,为半径作圆,圆与双曲线的一条渐近线于交、两点,若,则的离心率为_14已知一组数据6,7,8,8,9,10,则该组数据的方差是_.15等比数列的首项为,公比为,记,则数列的最大项是第_项.16观察下列等式:(1);(2);(3);(4),请你根据给定等式的共同
4、特征,并接着写出一个具有这个共同特征的等式(要求与已知等式不重复),这个等式可以是_.(答案不唯一)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17数列中,.(1)求证:数列为等差数列,求数列的通项公式;(2)若数列的前项和为,求证:.18平面四边形中,.(1)若,求;(2)设,若,求面积的最大值.19如图,在四棱锥中,底面为平行四边形,点为中点,且.(1)证明:平面;(2)证明:平面平面.20设数列为等比数列,且,(1)求数列的通项公式:(2)设,数列的前项和,求证:.21如图,已知在侧棱垂直于底面三棱柱中,点是的中点.(1)求证:;(2)求证:(3)求三
5、棱锥的体积.参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】设是的外心,则三棱锥体积最大时,平面,球心在上由此可计算球半径【详解】如图,设是的外心,则三棱锥体积最大时,平面,球心在上,即,又,平面,设球半径为,则由得,解得,球体积为故选A【点睛】本题考查球的体积,关键是确定球心位置求出球的半径2、A【解析】利用坐标表示出,根据垂直关系可知,解方程求得结果.【详解】, ,解得:本题正确选项:【点睛】本题考查向量垂直关系的坐标表示,属于基础题.3、A【解析】,所以,令,解得n7,即n7时递增,n7递减,所以a1a2a3a
6、7a8a9.所以a7a8最大本题选择A选项.4、B【解析】先利用两角和的余弦公式求出,通过条件可求得,进而可得.【详解】解:,因为,则,故,故选:B.【点睛】本题考查两角和的正切公式,注意角的范围的确定,是基础题.5、A【解析】易得梯形绕着旋转而成的几何体为圆台,再根据圆台的体积公式求解即可.【详解】易得梯形绕着旋转而成的几何体为圆台,圆台的高,上底面圆半径,下底面圆半径.故该圆台的体积 故选:A【点睛】本题主要考查了旋转体中圆台的体积公式,属于基础题.6、C【解析】利用圆心到直线的距离等于圆的半径即可求解.【详解】由题得圆的圆心坐标为(0,0),所以.故选C【点睛】本题主要考查直线和圆的位置
7、关系,意在考查学生对该知识的理解掌握水平,属于基础题.7、A【解析】由频率和为1,可算得成绩大于90分对应的频率,然后由频数总数=频率,即可得到本题答案.【详解】由图,得成绩大于90分对应的频率=,设该校参加初赛的人数为x,则,得,所以该校参加初赛的人数约为200.故选:A【点睛】本题主要考查频率直方图的相关计算,涉及到频率和为1以及频数总数=频率的应用.8、B【解析】由三角形的三边关系,可得“三角形函数”的最大值小于最小值的二倍,因为单调递增,无最大值和最小值,故排除A,符合“三角形函数”的条件,即B正确,单调递增,最大值为4,最小值为1,故排除C,单调递增,最小值为1,最大值为,故排除D.
8、故选B.点睛:本题以新定义为载体考查函数的单调性和最值;解决本题的关键在于正确理解“三角形函数”的含义,正确将问题转化为“判定函数的最大值和最小值间的关系”进行处理,充分体现转化思想的应用.9、C【解析】在中,由余弦定理求得,在中,利用正弦定理求得BD,则可得CD.【详解】在中,由余弦定理可得.又,故为直角三角形,故.因为,且为锐角,故.由利用正弦定理可得,代值可得,故.故选:C.【点睛】本题考查利用正弦定理以及余弦定理解三角形,属于综合基础题.10、A【解析】由题意,得直线是线段的中垂线,则其必过圆的圆心,将圆心代入直线,即可得本题答案【详解】解:由题意,得直线是线段的中垂线,所以直线过圆的
9、圆心,圆的圆心为,解得.故选:A.【点睛】本题给出直线与圆相交,且两个交点关于已知直线对称,求参数的值着重考查了直线与圆的位置关系等知识,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由诱导公式求解即可.【详解】因为所以故答案为:【点睛】本题主要考查了利用诱导公式化简求值,属于基础题.12、-1【解析】根据线性规划的基本方法求解即可.【详解】画出可行域有:因为.根据当直线纵截距最大时, 取得最小值.由图易得在处取得最小值.故答案为:【点睛】本题主要考查了线性规划的基本运用,属于基础题.13、【解析】如图所示,由题意可得|OA|=a,|AN|=|AM|=b,MAN=
10、60,|AP|=b,|OP|=设双曲线C的一条渐近线y=x的倾斜角为,则tan =又tan =,解得a2=3b2,e=答案:点睛:求双曲线的离心率的值(或范围)时,可将条件中提供的双曲线的几何关系转化为关于双曲线基本量的方程或不等式,再根据和转化为关于离心率e的方程或不等式,通过解方程或不等式求得离心率的值(或取值范围)14、.【解析】由题意首先求得平均数,然后求解方差即可.【详解】由题意,该组数据的平均数为,所以该组数据的方差是.【点睛】本题主要考查方差的计算公式,属于基础题.15、【解析】求得,则可将问题转化为求使得最大且使得为偶数的正整数的值,利用二次函数的基本性质求解即可.【详解】由等
11、比数列的通项公式可得,则问题转化为求使得最大且使得为偶数的正整数的值,当时,取得最大值,此时为偶数.因此,的最大项是第项.故答案为:.【点睛】本题考查等比数列前项积最值的计算,将问题进行转化是解题的关键,考查分析问题和解决问题的能力,属于中等题.16、【解析】观察式子特点可知,分子上两余弦的角的和是,分母上两个正弦的角的和是,据此规律即可写出式子【详解】观察式子规律可总结出一般规律:,可赋值,得故答案为:【点睛】本题考查归纳推理能力,能找出余角关系和补角关系是解题的关键,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析【解析】
12、(1)结合,构造数列,证明得到该数列为等差数列,结合等差通项数列计算方法,即可.(2)运用裂项相消法,即可.【详解】(1)由, (即),可得,所以,所以数列是以为首项,以2为公差的等差数列,所以,即.(2),所以,因为,所以.【点睛】本道题考查了等差数列通项计算方法和裂项相消法,难度一般.18、(1);(2)【解析】(1) 法一:在中,利用余弦定理即可得到的长度;法二:在中,由正弦定理可求得,再利用正弦定理即可得到的长度;(2)在中,使用正弦定理可知是等边三角形或直角三角形,分两种情况分别找出面积表达式计算最大值即可.【详解】(1)法一:中,由余弦定理得,即,解得或舍去,所以.法二:中,由正弦
13、定理得,即.解得,故,.由正弦定理得,即,解得.(2)中,由正弦定理及,可得,即或,即或.是等边三角形或直角三角形.中,设,由正弦定理得.若是等边三角形,则.当时,面积的最大值为;若是直角三角形,则.当时,面积的最大值为;综上所述,面积的最大值为.【点睛】本题主要考查正弦定理,余弦定理,面积公式,三角函数最值的相关应用,综合性强,意在考查学生的计算能力,转化能力,分析三角形的形状并讨论是解决本题的关键.19、(1)证明见解析;(2)证明见解析【解析】(1) 连接交于点,连接,可证,从而可证平面.(2) 可证平面,从而得到平面平面.【详解】(1) 连接交于点,连接,因为底面为平行四边形,所以为中点.在中,又为中点,所以.又平面,平面,所以平面.(2) 因为底面为平行四边形,所以.又即,所以.又即.又平面,平面,所以平面.又平面,所以平面平面.【点睛】线面平行的证明的关键是在面中找到一条与已知直线平行的直线,找线的方法是平行投影或中心投影,我们也可以通过面面平行证线面平行,这个方法的关键是构造过已知直线的平面,证明该平面与已知平面平行. 线面垂直的判定可由线线垂直得到,注意线线是相交的,也可由面面垂直得到,注意线在面内且线垂直于两个平面的交线.而面面垂直的证明可以通过线面垂直得到,也可以通过证明二面角是直二面角.