生物质裂解液化装置.

上传人:ni****g 文档编号:557127602 上传时间:2023-01-30 格式:DOC 页数:26 大小:2.20MB
返回 下载 相关 举报
生物质裂解液化装置._第1页
第1页 / 共26页
生物质裂解液化装置._第2页
第2页 / 共26页
生物质裂解液化装置._第3页
第3页 / 共26页
生物质裂解液化装置._第4页
第4页 / 共26页
生物质裂解液化装置._第5页
第5页 / 共26页
点击查看更多>>
资源描述

《生物质裂解液化装置.》由会员分享,可在线阅读,更多相关《生物质裂解液化装置.(26页珍藏版)》请在金锄头文库上搜索。

1、第七章 生物质热裂解液化装置生物质快速热裂解反应器是生物质快速热裂解液化技术的核心设备。目前国内外比较典型的反应器有流化床、旋转锥反应器、烧蚀反应器、涡旋反应器以及输运床、引流床、真空移动床等等。山东理工大学在国家863计划的资助下,研发了具有自主知识产权的利用固体热载体加热生物质的下降管式热裂解反应器和双螺旋滚筒式热裂解反应器。本章主要对生物质热裂解液化工艺的研究进展及流化床、旋转锥、下降管等典型生物质热裂解液化反应器的工艺原理、结构特点进行介绍。第一节 生物质热裂解液化工艺过程及研究进展一、 生物质热裂解液化工艺过程及要求生物质快速热裂解液化要求得到尽可能多的液体产物。采用快速热裂解技术,

2、生物质所含的长链有机高聚物在隔绝氧气的条件下迅速受热断链为小分子为主的热裂解蒸汽,热裂解蒸汽被迅速冷凝,从而获得液体油产物生物油(Bio-oil)。生物质快速热裂解液化制取生物油系统的工艺流程如图7-1所示。工艺过程如下:生物质经干燥和粉碎后喂入热裂解反应器中,反应气固产物首先经旋风分离器分离出残炭;再经冷激装置将热裂解蒸汽迅速冷却成液态,以防止可冷凝气体二次裂解为不可冷凝气体;所得的最终产物为残炭、不冷凝气体和生物油并分别收集。热裂解气干燥粉碎反应器生物质冷凝器炭粉分离器生物油不冷凝气炭粉图7-1 生物质热裂解液化工艺流程图生物质快速热裂解液化的工艺要求:(1)原料含水率应低于10%。(2)

3、把原料粉碎到足够小的粒度,以便提高加热速率、增加产油率;粒径大小与反应器有关,比如采用流化床及其它形式的热裂解器裂解,原料粒度一般应小于2mm。(3)工艺装置应在无氧或者缺氧条件下运行。(4)升温速率要在103/以上,热解温度一般在450600左右。(5)短的气相停留时间,停留时间越长,二次裂解发生的可能性越大,生成不可冷凝气体的成分增多,因此必须迅速冷却。而原料颗粒要完全裂解必须有一定的停留时间,两者对停留时间的要求是不同的,气相停留时间一般为0.23.0,大原料固相颗粒(2mm)的热裂解停留时间要求15s,小原料固相颗粒(2mm)的热裂解停留时间小于1s。(6)热裂解反应产物中的炭会起催化

4、作用,造成液化油不稳定,在热裂解气冷凝之前,必须快速彻底地除去。二、生物质热裂解液化工艺研究进展20世纪70年代末至80年代初,生物质快速热裂解液化术在欧美一些国家得到高度重视,到20世纪90年代,将固体生物质通过快速热裂解转化成生物燃油的研究在欧洲及北美有了突破性进展,技术比较先进的主要有加拿大、荷兰、英国、美国、瑞士、意大利等国家。他们研究开发的快速热裂解液化装置及相应技术主要有:流化床、旋转锥反应器、烧蚀反应器、涡旋反应器、循环流化床、输运床、引流床、真空移动床等等。这些反应器的结构虽然不同,性能也有所差异,但均可实现生物质的热裂解液化。近年来,国外出现了许多新型热解器,比较典型的有荷兰

5、吞特大学(University of Twente)研发的一种类似旋风分离器结构的新型生物质热裂解装置(PyRos),其最大特点是热裂解、气固分离效率极高,结构紧凑、可靠性强,而且生物质液体转化率很高,非常适合实验室及中小规模生产。Niels Bech等开发的离心式反应器(Pyrolysis Centrifuge Reactor)也是一种新型工艺,可以实现对农作物秸秆和木材的热裂解液化。目前国外已经开发出的各种类型的反应器应用情况见表7-1。表7-1 国外生物质热裂解生产生物油工艺的研发情况主持研究机构国 家技 术规模/kgh-1现 状Dynamotive加拿大流化床1500运行Interch

6、em美国烧蚀涡流床13601994年废弃Red Arrow/Ensyn美国循环传输床1250运行Red Arrow/Ensyn美国循环传输床1000运行ENEL/Ensyn意大利循环传输床625运行BTG/Kara荷兰旋转锥200运行Union Fenosa/Waterloo西班牙流化床200运行Red Arrow/Ensyn加拿大循环传输床125运行Ensyn加拿大循环传输床100运行Pasquali/ENEL意大利循环流化床50停用BTG/SAU荷兰/中国旋转锥50运行University of Hamburg德国流化床50运行University of Laval加拿大真空移动床50运行

7、WWTC*加拿大奥格窑(Augur kiln)42运行Ensyn加拿大循环传输床40运行NREL美国烧蚀涡流器301997年拆除Dynamotive加拿大流化床20运行NREL*美国烧蚀涡流器20运行RTI加拿大流化床20运行VTT/Ensyn芬兰循环传输床20运行CRES希腊循环传输床10运行Ensyn加拿大循环传输床10运行University of Tubingen*德国奥格窑(Augur kiln)10运行University of Twente荷兰旋转锥10运行BFH/IWC德国流化床6运行INETI葡萄牙流化床5运行University of Aston英国烧蚀板5运行RTI加拿大

8、流化床3拆除University of Aston英国烧蚀板3运行University of Waterloo加拿大流化床31995年搬到RTIUniversity of Aston英国流化床2运行CPERI希腊循环流化床1重建BFH(IWC)德国流化床1运行NREL美国流化床1运行RTI加拿大流化床1运行University of Aston英国流化床1运行University of Leeds英国流化床1运行University of Oldenbury德国流化床1运行University of Technology马来西亚流化床1运行University of Santiago西班牙流化

9、床1设计中University of Sassari意大利流化床1运行University of Zaragoza西班牙流化床1运行VTT芬兰流化床1运行 供所有气体和挥发份燃烧的设备,但能够生产液体产物。* 慢速生物质热裂解液化我国在生物质快速热裂解液化技术领域的研究起步较晚,最早用于生物质热裂解液化的反应器是上世纪90年代沈阳农业大学从荷兰引进的旋转锥反应器,这也可以看做我国在该技术领域研究的开始。其后经历了从消化吸收改进国外反应器到研发具有自主知识产权的新型热裂解反应器等阶段。从文献来看,流化床是国内用于生物质热裂解液化研究最为广泛的反应器,比如中科院广州能源所、上海交通大学、浙江大学、

10、华东理工大学、上海理工大学、中国科技大学、沈阳农业大学、吉林农业大学、山东理工大学、北京林业大学、重庆大学、哈尔滨工业大学、中科院地理科学与资源研究所、中科院广州过程所、东南大学热能工程研究所等都开展了这项技术的研究。另外,国内用于生物质快速热裂解液化研究的反应器还有浙江大学的固定床和回转窖、华东理工大学的管式炉、山东理工大学的水平携带床、螺旋滚筒式反应器和下降管反应器、河南农业大学的平行反应管、浙江农业大学的热裂解釜、清华大学的热分解器等,但其规模大多用于实验室研究。从文献资料和专利申请来看,生物质处理能力比较大的生物质热裂解反应器主要有山东理工大学的下降管反应器、东北林业大学的转锥式热裂解

11、反应器和中国科技大学的自热式流化床反应器,其生物质处理能力均在200kg/h以上。山东理工大学研发的下降管和双螺旋滚筒式热裂解反应器是利用高温散体固体热载体(比如陶瓷球、石英砂等)与生物质颗粒之间的温差实现生物质的快速升温热解的一种新型工艺。该工艺的优势在于:采用生物质燃烧提供热裂解热源,节约了电、石油、煤等高品位能源,不但提高了能效,而且降低了温室气体的排放;规模扩大方便,利于工业化生产;区别于流化床反应器,不需要引入其它气体(一般为惰性气体、或不含氧气的烟气)作为热载体,大大降低了热裂解气体产物冷却过程中的负荷和成本;固体热载体可以循环利用,节约能耗和成本。因此,山东理工大学连续获得国家“

12、十五”、“十一五”和863计划的支持。1、流化床反应器在生物质热裂解技术工艺中,流化床在目前的生物质热裂解试验研究中应用最为广泛。流化床最早于1980年在加拿大Waterloo大学研发并应用于生物质热裂解领域。流化床反应器属于混合式反应器,主要借助热气流或气固多相流对生物质进行加热,起主导方式的是导热和对流换热。常见的反应器类型有鼓泡流化床反应器、循环流化床反应器、导向管喷动流化床反应器等装置。本章将在第二节对流化床工艺及结构做进一步详细介绍。(1)鼓泡流化床鼓泡流化床的工艺原理如图7-2所示,采用鼓泡流化床进行快速热裂解,流化介质是热裂解生成的气体,热载体可采用砂类材料,比如石英砂。由于砂子

13、的热容很大(是相同体积空气的1000倍),与粉状的生物质接触可实现高的传热速率(1000/s以上),反应停留时间极短,挥发物经过快速分离和冷凝后得到生物原油液体燃料,对于一些生物质原料最高生物油产率可达80%以上。鼓泡流化床通过调节热载气流量来控制原料颗粒和热裂解蒸汽的停留时间,非常适合进行小颗粒(小于2mm)原料的热裂解。鼓泡流化床的设备制造容易、操作简单、反应温度控制方便,特别是它的热载体密度高、传热效率好,非常有利于快速热裂解进行。图7-2鼓泡流化床生物质热裂解液化工艺流程(2)循环流化床循环流化床的工艺流程如图7-3所示。在这种工艺中,焦炭产物和气体流带出的砂子通过旋风分离器回到燃烧室

14、内循环利用,从而降低了热量的损失。由于提供热量的燃烧室和进行反应的流化床合二为一,因此降低了反应器的制造成本,而且加热速度控制方便,反应温度均匀,焦炭停留时间和气体产物停留时间基本相同,适合小原料颗粒(小于2mm)的热裂解,生物油产率可达60%。在目前各种快速热裂解生产装置中,循环流化床的处理量最大,可达200kg/h。但循环流化床内的流体运动情况十分复杂,仍需进行反应器的运转稳定性和系统的反应动力学研究。另外,由于固体传热介质需要循环使用,增加了系统的操作复杂性。 图7-3循环流化床生物质热裂解液化工艺流程(3)导向管喷动流化床华东理工大学已建成生物质最大处理量为15kg/h的导向管喷动流化床裂解反应器,采用的是一种集流化床和喷动床为一体的新型流态化技术。这种技术是在裂解反应器内设置了导向管,使流化床层更稳定。床层底部的流化介质在喷动气的作用下,先沿导向管内部上升,然后再沿导向管与裂解反应器之间的环隙下降,从而形成循环流;循环流载着生物质颗粒进行热裂解反应,可有效提高传热速率。在这种反应器中,热裂解蒸汽可以连续快速流出,而原料颗粒则在床内循环进行充分裂解,直到颗粒足够小后才被气体带出床层。这样,原料

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 学术论文 > 其它学术论文

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号