金属位错理论.doc

上传人:夏** 文档编号:556755162 上传时间:2023-12-20 格式:DOC 页数:17 大小:953.51KB
返回 下载 相关 举报
金属位错理论.doc_第1页
第1页 / 共17页
金属位错理论.doc_第2页
第2页 / 共17页
金属位错理论.doc_第3页
第3页 / 共17页
金属位错理论.doc_第4页
第4页 / 共17页
金属位错理论.doc_第5页
第5页 / 共17页
点击查看更多>>
资源描述

《金属位错理论.doc》由会员分享,可在线阅读,更多相关《金属位错理论.doc(17页珍藏版)》请在金锄头文库上搜索。

1、金属位错理论位错的概念最早是在研究晶体滑移过程时提出来的。当金属晶体受力发生塑性变形时,一般是通过滑移过程进行的,即晶体中相邻两部分在切应力作用下沿着一定的晶面晶向相对滑动,滑移的结果在晶体表面上出现明显的滑移痕迹滑移线。为了解释此现象,根据刚性相对滑动模型,对晶体的理论抗剪强度进行了理论计算,所估算出的使完整晶体产生塑性变形所需的临界切应力约等于G/30,其中G为切变模量。但是,由实验测得的实际晶体的屈服强度要比这个理论值低34数量级。为解释这个差异,1934年,Taylor,Orowan和Polanyi几乎同时提出了晶体中位错的概念,他们认为:晶体实际滑移过程并不是滑移面两边的所有原子都同

2、时做刚性滑动,而是通过在晶体存在着的称为位错的线缺陷来进行的,位错再较低应力的作用下就能开始移动,使滑移区逐渐扩大,直至整个滑移面上的原子都先后发生相对滑移。按照这一模型进行理论计算,其理论屈服强度比较接近于实验值。在此基础上,位错理论也有了很大发展,直至20世纪50年代后,随着电子显微镜分析技术的发展,位错模型才为实验所证实,位错理论也有了进一步的发展。目前,位错理论不仅成为研究晶体力学性能的基础理论,而且还广泛地被用来研究固态相变,晶体的光、电、声、磁和热学性,以及催化和表面性质等。一、 位错的基本类型和特征位错指晶体中某处一列或若干列原子有规律的错排,是晶体原子排列的一种特殊组态。从位错

3、的几何结构来看,可将他们分为两种基本类型,即刃型位错和螺型位错。1、 刃型位错刃型位错的结构如图1.1所示。设含位错的晶体为简单立方晶体,晶体在大于屈服值的切应力t 作用下,以ABCD面为滑移面发生滑移。多余的半排原子面EFGH犹如一把刀的刀刃插入晶体中,使ABCD 面上下两部分晶体之间产生了原子错排,故称“刃型位错”。晶体已滑移部分和未滑移部分的交线EF就称作刃型位错线。图1.1 含有刃型位错的晶体结构刃型位错结构的特点:(1)刃型位错有一个额外的半原字面。一般把多出的半原字面在滑移面上边的称为正刃型位错,记为“”;而把多出在下边的称为负刃型位错,记为“T”。其实这种正、负之分只具有相对意义

4、,而无本质的区别。(2)刃型位错线可理解为晶体中已滑移区与未滑移区的边界线。他不一定是直线,也可以是折线或曲线,但它必与滑移方向相垂直,也垂直于滑移矢量。(3)滑移面必定是同时包含有位错线和滑移矢量的平面,在其他面上不能滑移。由于在刃型位错中,位错线与滑移矢量互相垂直,因此,由它们所构成的平面只有一个。(4)晶体中存在刃型位错之后,位错周围的点阵发生弹性畸变,既有切应变,又有正应变。就正刃型位错而言,滑移面的上方点阵受到压应力,下方点阵受到拉应力;负刃型位错与此相反。(5)在位错线周围的过渡区(畸变区)每个原子具有较大的平均能量。但该区只有几个原子间距宽,畸变区是狭长的管道,所以刃型位错是线缺

5、陷。2、螺型位错螺型位错是另一种类型的位错,它的结构特点可用图1.2来加以说明。晶体在外加切应力t 作用下,沿ABCD面滑移,图中BC线为已滑移区与未滑移区的分界处。在BC与aa线之间上下两层原子发生了错排现象,连接紊乱区原子,会画出一螺旋路径,该路径所包围的管状原子畸变区就是螺型位错。 图1.2 螺型位错示意图螺型位错具有以下特点:(1)螺型位错无额外的半原字面,原子错排是呈轴对称的。(2)根据位错线附近呈螺旋形排列的原子的旋转方向不同,螺型位错可分为左旋和右旋螺型位错。(3)螺型位错线与滑移矢量平行,因此一定是直线,而且位错线的移动方向与晶体移动方向互相垂直。(4)纯螺型位错的滑移面不是唯

6、一的。凡是包含螺型位错线的平面都可以作为它的滑移面。但实际上,滑移通常是在那些原子密排面上进行的。(5)螺型位错线周围的点阵也发生了弹性畸变,但是,只有平行于位错线的切应变而无正应变,则不会引起体积膨胀和收缩,且垂直于位错线的平面投影上,看不到原子的位移,看不出有缺陷。(6)螺型位错周围的点阵畸变岁离位错线距离的增加而急剧减少,故它也是包含几个原子宽度的线缺陷。3、混合位错除上面介绍的两种基本类型位错外,还有一种形式更为普遍的位错,其滑移矢量既不垂直也不平行位错线,而与位错线相交成任意角度,这样的位错称为混合位错。如图1.3所示。位错线上任意一点,经矢量分解后,可分解为刃型位错和螺型位错分量。

7、晶体中位错线的形状可以是任意的,但位错线上各点的柏氏矢量相同,只是各点的刃型、螺型分量不同而已。 图1.3 混合位错的形成及分解示意图由于位错线是已滑移区与未滑移区的分界线。因此,位错具有一个重要的性质,即一根位错线不能终止于晶体内部,而只能露头于晶体表面(包括境界)。若它终止于晶体内部,则必与其他位错线相连接,或在晶体内部形成封闭线。形成封闭线的位错成为位错环。二、伯氏矢量为便于描述晶体中的位错,以及更为确切地表征不同类型为错的特征,1939年,伯格斯(J.M.Burgers)提出了采用伯氏回路来定义位错,借助一个规定的矢量及伯氏矢量可揭示位错的本质。1、确定伯氏矢量的步骤(1)首先选定位错

8、线的正向(),例如,通常规定出纸面的方向为位错线的正方向。(2)根据右手螺旋法则确定伯氏回路方向。(3)按预定回路方向和步数作回路,该回路并不封闭,由终点Q向起点M引一矢量b,使回路闭合,如图2.1(b )所示。这个矢量b即为实际晶体中位错的伯氏矢量。(a)实际晶体的伯氏回路 (b)完整晶体的相应回路图2.1 刃型位错伯氏矢量的确定由图2.1可见,刃型位错的伯氏矢量与位错线垂直,这是刃型位错线的一个重要特征。刃型位错的正、负,可借右手法则来确定,即用右手的拇指、食指和中指构成直角坐标系,以食指指向位错线的方向,中指指向伯氏矢量的方向,则拇指的指向代表多余半原子面的位向,且规定拇指指向上者为正刃

9、型位错;反之为负刃型位错。螺型位错的伯氏矢量也可以按同样的方法加以确定,螺型位错的伯氏矢量与位错线平行,且规定b与正向平行者为右螺旋位错,b与反向平行者为左螺型位错。至于混合位错的伯氏矢量既不垂直也不平行于位错线,而与它相交成角(0/2),则可将其分解成垂直和平行于位错线的刃型分量(be=b)和螺型分量(bs=b)2、 伯氏矢量的特性(1)伯氏矢量是一个反映位错周围点阵畸变总累积的物理量。/b/称为位错强度。因此,我们也可把位错定义为伯氏矢量不为零的晶体缺陷。(2)伯氏矢量与回路起点及其具体路径无关。如果一个伯氏回路不和其他位错线相遇,不论回路怎样扩大、缩小或任意移动,由此回路确定的伯氏矢量是

10、唯一的,即伯氏矢量具有守恒性。(3)一个不分叉的位错线,不论其形状如何变化(直线、曲折线或闭合的环状),也不管位错线上各处的位错类型是否相同,其各部位的伯氏矢量都相同;而且当位错在晶体中运动或者改变方向时,其伯氏矢量不变,即一根位错线具有唯一的伯氏矢量。(4)若一个伯氏矢量为b的位错可以分解为伯氏矢量分别为b1,b2.,bn的n个位错,则分解后各位错伯氏矢量之和等于原位错的伯氏矢量,即b= 。如图2.2 所示,b1位错分解为b2和b3两个位错,则b1=b2+b3。图2.2 位错线相交与伯氏矢量的关系(5)位错在晶体中存在的形态可形成一个闭合的位错环,或连接于其他位错(交与位错结点),或终止在晶

11、界,或露头于晶体表面,但不能中断于晶体内部。这种性质称为位错的连续性。三、位错的运动位错的最重要性质之一是它可以在晶体中运动,而晶体宏观的塑性变形是通过位错运动来实现的。晶体的力学性能如强度、塑性和断裂等均与位错的运动有关。位错的运动方式有两种最基本形式,即滑移和攀移。1、位错的滑移位错的滑移是在外加切应力的作用下,通过位错中心附近的原子沿着伯氏矢量方向在滑移面上不断地做少量的位移(小于一个原子间距)而逐步实现的。图3.1 是刃型位错的滑移过程。在外加切应力t 作用下,位错中心的原子向左(右)移动小于一个原子间距的距离,使位错在滑移面上向左(右)移动了一个原子距离。由于刃型位错的滑移面是由位错

12、线与伯氏矢量构成的平面,而且刃型位错的运动方向始终垂直于位错线并平行于伯氏矢量,因此刃型位错的滑移仅限于单一的滑移面上。 (a)正刃位错滑移方向与外力方向相图 (b)负刃位错滑移方向与外力方向相反图3.1 刃型位错的滑移过程在滑移时,由于螺型位错的移动方向与位错线垂直,也与伯氏矢量垂直,因此,螺型位错的滑移不限于单一的滑移面上。值得注意的是,对于螺型位错,由于所有包含位错线的晶面都可成为其滑移面,因此,当某一螺型位错在原滑移面上运动受阻时,有可能从原滑移面转移到与之相交的另一滑移面上去继续滑移,这一过程称为交滑移。如果交滑移后的位错再转回和原滑移面平行的滑移面上继续运动,则称为双交滑移。2、位

13、错的攀移位错的攀移指在热缺陷或外力作用下,位错线在垂直其滑移面方向上的运动,结果导致晶体中空位或间隙质点的增殖或减少。刃型位错除了可以在滑移面上滑移外,还可以在垂直于滑移面的方向上运动,即发生攀移。通常把多余半原子面向上的运动称为正攀移,向下运动称为负攀移。刃型位错的攀移实质上就是构成刃型位错的多余半原子面的扩大或缩小,因此,他可以通过物质迁移即原子原子或空位的扩散来实现。如果有空位迁移到半原子面下端,或者半原子面下端的原子扩散到别处时,半原子面将缩小,即位错向上运动,则发生正攀移;反之,若有原子扩散到半原子面下端,半原子面将扩大,位错向下运动,就发生负攀移。螺型位错没有多余的半原子面,因此,

14、不会发生攀移运动。由于攀移伴随着位错线附近原子的增加或减少,即有物质迁移,因此需要通过扩散才能进行。故把攀移运动称为“非守恒运动”;而相对应的位错滑移称为“守恒运动”。位错攀移需要热激活,较之滑移所需的能量更大。对大多数材料,在室温下很难进行位错的攀移,而在较高温度下,攀移较易实现。经高温淬火、冷变形加工和高能粒子辐射后,晶体中将产生大量的空位和间隙原子,晶体中过饱和点缺陷的存在有利于攀移运动的进行。3、运动位错的交割当一位错在某一滑移面上运动时,会与穿过滑移面的其他位错(通常将穿过此滑移面的其他位错称为林位错)交割。在位错的滑移过程中,其位错线往往很难同时实现全长的运动。因而一个运动的位错线

15、,特别是在受到阻碍的情况下,有可能通过其中一部分线段(n个原子间距)首先进行滑移。若由此形成的曲折线段就在位错的滑移面上时,称为扭折;若该曲线段垂直于位错的滑移面时,则称为割阶。扭折和割阶也可由位错之间交割而形成。从前面得知,刃型位错的攀移是通过空位或原子的扩散来实现的,而原子(或空位)并不是在一瞬间就能一起扩散到整条位错线上,而是逐步迁移到位错线上的。这样,在位错的已攀移段与未攀移段之间就会产生一个台阶,于是也在位错线上形成了割阶。有时位错的攀移可理解为割阶沿位错线逐步推移,而使位错线上升或下降,因而攀移过程与割阶的形成能和移动速度有关。典型的位错交割包括两个伯氏矢量相互垂直或平行的刃型位错

16、产生的交割、两个伯氏矢量相互垂直的螺型位错交割以及两个伯氏矢量垂直的刃型位错和螺型位错的交割。应当指出,刃型位错的割阶部分仍为刃型位错,而扭折部分则为螺型位错;螺型位错中的扭折和割阶线段,由于均与伯氏矢量相垂直,故均属于刃型位错。四、位错的弹性性质1、位错的应力场对晶体中位错周围的弹性应力场准确地进行定量计算,是复杂而困难的。为简化起见,通常可采用弹性连续介质模型来进行计算。该模型首先假设晶体是完全弹性体,服从胡克定律;其次,把晶体看成是各向同性的;第三,近似的认为晶体内部由连续介质组成,晶体中没有空隙,因此晶体中的应力、应变、位移等量是连续的,可用连续函数表示。应当注意:该模型未考虑到位错中心区的严重点阵畸变情况,因此导

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲 > 社会民生

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号