抽象函数解题方法与技巧.doc

上传人:博****1 文档编号:556454413 上传时间:2024-02-17 格式:DOC 页数:8 大小:163.51KB
返回 下载 相关 举报
抽象函数解题方法与技巧.doc_第1页
第1页 / 共8页
抽象函数解题方法与技巧.doc_第2页
第2页 / 共8页
抽象函数解题方法与技巧.doc_第3页
第3页 / 共8页
抽象函数解题方法与技巧.doc_第4页
第4页 / 共8页
抽象函数解题方法与技巧.doc_第5页
第5页 / 共8页
点击查看更多>>
资源描述

《抽象函数解题方法与技巧.doc》由会员分享,可在线阅读,更多相关《抽象函数解题方法与技巧.doc(8页珍藏版)》请在金锄头文库上搜索。

1、抽象函数解题方法与技巧 所谓抽象函数问题,是指没有具体地给出函数的解析式,只给出它的一些特征或性质。解决这类问题常涉及到函数的概念和函数的各种性质,因而它具有抽象性、综合性和技巧性等特点。抽象函数问题既是教学中的难点,又是近几年来高考的热点。1. 换元法换元法包括显性换元法和隐性换元法,它是解答抽象函数问题的基本方法.例1. 已知f(1+sinx)=2+sinx+cos2x, 求f(x)解:令u=1+sinx,则sinx=u-1 (0u2),则f(u)=-u2+3u+1 (0u2)故f(x)=-x2+3x+1 (0u2)2.方程组法运用方程组通过消参、消元的途径也可以解决有关抽象函数的问题。例

2、2.解:例3.解:3.待定系数法如果抽象函数的类型是确定的,则可用待定系数法来解答有关抽象函数的问题。例4.已知f(x)是多项式函数,且f(x+1)+f(x-1)=2x2-4x,求f(x).解:由已知得f(x)是二次多项式,设f(x)=ax2+bx+c (a0)代入比较系数得过且过:a=1,b= -2,c= -1,f(x)=x2-2x-1.4.赋值法有些抽象函数的性质是用条件恒等式给出的,可通过赋特殊值法使问题得以解决。例5.对任意实数x,y,均满足f(x+y2)=f(x)+2f(y)2且f(1)0,则f(2001)=_.解:令x=y=0,得:f(0)=0,令x=0,y=1,得f(0+12)=

3、f(0)+2f(1)2,例6.已知f(x)是定义在R上的不恒为零的函数,且对于任意的函数a,b都满足f(ab)=af(b)+bf(a). (1)求f(0),f(1)的值;(2)判断f(x)的奇偶性,并证明你的结论;(3)若f(2)=2,un=f(2n) (nN*),求证:un+1un (nN*).解:(1)令a=b=0,得f(0)=0,令a=b=1,得f(1)=0.(2)f(x)是奇函数.因为:令a=b=-1,得f(-1)(-1)=-f(-1)-f(-1),f(-1)=0,故f(-x)=f(-1)(x)= -f(x)+xf(-1)= -f(x),故f(x)为奇函数.(3)先用数学归纳法证明:u

4、n=f(2n)0 (nN*)(略)5.转化法通过变量代换等数学手段将抽象函数具有的性质与函数的单调性等定义式建立联系,为问题的解决带来极大的方便.例7.设函数f(x)对任意实数x,y,都有f(x+y)=f(x)+f(y),若x0时f(x)0,且f(1)= -2,求f(x)在-3,3上的最大值和最小值.解:令x=y=0,得f(0)=0,令y=-x,得f(-x)+f(x)=f(0)=0,即f(x)为奇函数.设x10,由已知得f(x2-x1)0,故f(x2)=f(x2-x1+x1)=f(x2-x1)+f(x1) f(x1).所以f(x)是R上的减函数,又f(3)=f(1)+f(2)=-6,f(-3)

5、=6.故f(x)在-3,3上的最大值为6,最小值为-6.例8.定义在R+上的函数f(x)满足: 对任意实数m,f(xm)=mf(x); f(2)=1.(1)求证:f(xy)=f(x)+f(y)对任意正数x,y都成立;(2)证明f(x)是R+上的单调增函数;(3)若f(x)+f(x-3)2,求x 的取值范围.解:(1)令x=2m,y=2n,其中m,n为实数,则f(xy)=f(2m+n)=(m+n)f(2)=m+n.又f(x)+f(y)=f(2m)+f(2n)=mf(2)+nf(2)=m+n,所以f(xy)=f(x)+f(y)故f(x1)f(x2),即f(x)是R+上的增函数.(3)由f(x)+f

6、(x-3)2及f(x)的性质,得fx(x-3)2f(2)=f(2)解得 30,nN;f(n1+n2)=f(n1)f(n2),n1,n2N*;f(2)=4同时成立?若存在,求出函数f(x)的解析式;若不存在,说明理由.解:假设存在这样的函数f(x),满足条件,得f(2)=f(1+1)=4,解得f(1)=2.又f(2)=4=22,f(3)=23,由此猜想:f(x)=2x (xN*) (数学归纳证明 略)例10.已知f(x)是定义在R上的函数,f(1)=1,且对任意xR都有f(x+5)f(x)+5,f(x+1)f(x)+1.若g(x)=f(x)+1-x,则g(2002)=_.解:由g(x)=f(x)

7、+1-x,得f(x)=g(x)+x-1.所以g(x+5)+(x+5)-1g(x)+(x-1)+5,g(x+1)+(x+1)-1g(x)+(x-1)+1即 g(x+5)g(x), g(x+1)g(x).所以g(x)g(x+5)g(x+4)g(x+3)g(x+2)g(x+1),故g(x)=g(x+1)又g(1)=1,故g(2002)=1.7.模型法 模型法是指通过对题目的特征进行观察、分析、类比和联想,寻找具体的函数模型,再由具体函数模型的图象和性质来指导我们解决抽象函数问题的方法。 应掌握下面常见的特殊模型:特殊模型抽象函数正比例函数f(x)=kx (k0)f(x+y)=f(x)+f(y)幂函数

8、 f(x)=xnf(xy)=f(x)f(y) 或指数函数 f(x)=ax (a0且a1)f(x+y)=f(x)f(y) 对数函数 f(x)=logax (a0且a1)f(xy)=f(x)+f(y) 正、余弦函数 f(x)=sinx f(x)=cosxf(x+T)=f(x)正切函数 f(x)=tanx余切函数 f(x)=cotx例11.设定义在R上的函数f(x),满足当x0时,f(x)1,且对任意x,yR,有f(x+y)=f(x)f(y),f(1)=2解:(1)先证f(x)0,且单调递增,因为f(x)=f(x+0)=f(x)f(0),x0时f(x)1,所以f(0)=1.f(x)=f(x-xo)+

9、xo=f(x-xo)f(xo)=0,与已知矛盾,故f(x)0任取x1,x2R且x10,f(x2-x1)1,所以f(x1)-f(x2)=f(x2-x1)+x1-f(x1)=f(x2-x1)f(x1)-f(x1)=f(x1)f(x2-x1)-10.所以xR时,f(x)为增函数. 解得:x|1x1时,f(x)f(x2),故f(x)在R+上为减函数.能力训练1.A.1999 B.2000 C.2001 D.20022.已知不恒为零的函数f(x)对任意实数x,y都满足f(x+y)+f(x-y)=2f(x)+f(y),则f(x)是A.偶函数 B.奇函数 C.既是奇函数又是偶函数 D.非奇非偶函数3.的值为

10、_.4.则f(x)=_.5.(2)当x(-1,0)时,有f(x)0.求证:()f(x)是奇函数;()解:(1)易证f(x)是奇函数。(2)易证f(x)在(-1,0),(0,1)上是单调递减函数.6.定义域为R的函数f(x)满足:对于任意的实数x,y都有f(x+y)=f(x)+f(y)成立,且当x0时f(x)0恒成立.(1)判断函数f(x)的奇偶性,并证明你的结论;(2)证明f(x)为减函数;若函数f(x)在-3,3)上总有f(x)6成立,试确定f(1)应满足的条件;解:(1)由已知对于任意xR,yR,f(x+y)=f(x)+ f(y)恒成立令x=y=0,得f(0+0)= f(0)+ f(0),

11、f(0)=0令x=-y,得f(x-x)= f(x)+ f(-x)=0对于任意x,都有f(-x)= - f(x)f(x)是奇函数.(2)设任意x1,x2R且x1x2,则x2-x10,由已知f(x2-x1)0(1)又f(x2-x1)= f(x2)+ f(-x1)= f(x2)- f(x1)(2)由(1)(2)得f(x1)f(x2),根据函数单调性的定义知f(x0在(-,+)上是减函数.f(x)在-3,3上的最大值为f(-3).要使f(x)6恒成立,当且仅当f(-3)6,又f(-3)= - f(3)= - f(2+1)=- f(2)+ f(1)= - f(1)+ f(1)+ f(1)= -3 f(1

12、),f(1)-2.(3) f(ax2)- f(x) f(a2x)- f(a)f(ax2)- f(a2x)nf(x)- f(a)f(ax2-a2x)nf(x-a)(10分)由已知得:fn(x-a)=nf(x-a)f(ax2-a2x)fn(x-a)f(x)在(-,+)上是减函数ax2-a2xn(x-a).即(x-a)(ax-n)0,a0,(x-a)(x-)0,(11分)讨论:(1)当a0,即a-时,原不等式解集为x | x或xa;(2)当a=0即a=-时,原不等式的解集为;(3)当a0时,即-a0时,原不等式的解集为x | xa或x一、抽象函数的定义域例1已知函数f(x)的定义域为1,3,求出函数

13、g(x)=f(x+a)+f(x-a) (a0)的定义域。解析:由由a0 知只有当0a1时,不等式组才有解,具体为x|1+ax3-a;否则不等式组的解集为空集,这说明当且仅当0a1时,g(x)才能是x的函数,且其定义域为(1+a,3-a。 点评:1.已知f(x)的定义域为a,b,则fg(x)的定义域由ag(x)b,解出x即可得解;2.已知fg(x)的定义域为a,b,则f(x)的定义域即是g(x)在xa,b上的值域。二、抽象函数的值域解决抽象函数的值域问题由定义域与对应法则决定。例2若函数y=f(x+1)的值域为-1,1求y=(3x+2)的值域。解析:因为函数y=f(3x+2)中的定义域与对应法则与函数y=f(x+1)的定义域与对应法则完全相同,故函数y=f(3x+2)的值域也为-1,1。三、抽象函数的奇偶性四、抽象函数的对称性 例3已知函数y=f(2x+1)是定义在R上的奇函数,函数y=g(x)的图像与函数y=f(x)的图像关于y=x对称,则g(x)+ g(-x)的值为( )A、 2 B、 0 C、

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 生活休闲 > 科普知识

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号