有限单群:一段百年征程.doc

上传人:博****1 文档编号:556335850 上传时间:2023-06-12 格式:DOC 页数:14 大小:28KB
返回 下载 相关 举报
有限单群:一段百年征程.doc_第1页
第1页 / 共14页
有限单群:一段百年征程.doc_第2页
第2页 / 共14页
有限单群:一段百年征程.doc_第3页
第3页 / 共14页
有限单群:一段百年征程.doc_第4页
第4页 / 共14页
有限单群:一段百年征程.doc_第5页
第5页 / 共14页
点击查看更多>>
资源描述

《有限单群:一段百年征程.doc》由会员分享,可在线阅读,更多相关《有限单群:一段百年征程.doc(14页珍藏版)》请在金锄头文库上搜索。

1、有限单群:一段百年征程1832年的某个清晨,革命中的法国见证了又一次决斗。在某个瞬间,某位青年被对手的枪射中腹部,随后去世。在当时狂热的政治斗争中,只有寥寥数人意识到,法国,甚至世界,又失去了另一个伟大的头脑。这位青年姓伽罗华,他的最大遗产围绕着一个数学概念:群。在接下来的一百多年后,一群在世界各地的数学家,沿着这位青年开辟的路径,对有限群的结构进行了彻底的分析。其中的发现,可能出乎所有人的意料。这是一个关于群的故事,这是一个关于单群的故事。高度抽象的对称交错群A_5的一个Cayley图(一种群的图示)什么是群?一个数学家可能会给你这样的回答:一个群是一个集合G以及在G上的一个运算,满足以下三

2、个条件:1.存在一个G中的元素e,使得对于G中的任意元素x,有x=xe=ex。这样的e叫做群的单位元2.对于G中的任意元素x,y,z,有(xy)z=x(yz),这是结合律3.对于G中的任意元素x,存在G中的一个元素y,使得e=xy=yx。这样的y被称为x的逆元这样的定义,即使是对一名刚进大学的数学系学生来说也稍显抽象。但数学的力量就在于它的抽象。它什么都不是,所以它什么都是。整数和加法就构成一个群。什么数加上0都不变,所以0是单位元;a+(b+c)=(a+b)+c,这是小学的加法结合律;一个数加上它的相反数是单位元0,所以相反数就是逆元。正实数和乘法也构成一个群,1是它的单位元,乘法有结合律,

3、倒数是逆元。如果我们认为9点+5点相当于9点的5个小时后,也就是2点的话,就连时钟也构成一个群。宝石的晶体构造,电脑的压缩校验算法,以至于魔方的还原,无不牵涉“群”这个概念。而对于自然界的各种对称性,群也是对其最自然的描述方式。难怪有人会说,群就是对称,研究群,就是研究各种对称性。正是由于放弃了与现实的对应,像群这样的抽象数学概念才能在现实中获得广泛的对应。我们研究群,并不关心它的具体元素是什么,是x,y,z还是姬十三、猛犸、桔子都无所谓,只要知道元素通过运算产生的关系就够了,这就是群的全部。只要符合群的公理,能应用到x,y,z上的结论就能应用到姬十三、猛犸、桔子上,这就是抽象的力量。超越时代

4、的孤独伽罗华的画像也正由于这种抽象,群的概念在一开始并没有很快地被接受。伽罗华是在研究一元五次方程的根式解时开始触及群的概念的。对于一元二次方程来说,我们可以将方程的所有解写成有关方程系数的一个根式(允许四则运算和开常数次方运算组成的式子),这称为方程的根式解。对于三次以及四次方程,也有这样的公式,可以直接从方程的系数得到方程的所有解。然而,对于五次以及更高次的方程来说,此前阿贝尔已经证明一般的公式并不存在。伽罗华要解决的,是判断何时存在这样的根式表达。为了解决这个问题,他首次定义了群这种代数结构,仔细地研究了群的各种性质,以及它与更高级的一种代数结构域的关系,并以此发展了一套理论,完整地解决

5、了这个问题。他写下了关于这套理论与高次方程根式解的备忘录,并将其递交到法兰西科学院。他的不幸从此开始。这份备忘录的评审人是柯西。虽然认识到了伽罗华工作的重要性,柯西却没有接受这份备忘录,而是建议伽罗华修改这份备忘录以竞逐科学院的数学奖。伽罗华接受了这个建议,第二次提交了备忘录。天意弄人,评审人傅里叶之后不久就逝世了,伽罗华的备忘录不知所踪。伽罗华决定最后一搏,但这也被泊松驳回,理由是“无法理解”。当消息传到伽罗华耳中时,他早已因为政治斗争而身陷囹圄,此时离他的决斗只有半年时间。没有人理解他的理论,或者说没有人愿意去理解他的理论。就是这套理论,使伽罗华的名声流芳百世。尽管他无法发表他的备忘录,但

6、他此前发表的论文讲述了这个理论的一些基础。泊松的驳回理由,使他更认真地打磨他的理论,以冀数学界的认同。但死神的镰刀没有给他这个时间,上天不打算给他安排生前的荣耀。1832年5月30日,年方二十的伽罗华,迎来了他第一次也是最后一次的决斗。这场决斗的细节已经被时间之砂打磨掩盖,什么对手,什么原因,有人说是为了爱情,有人说对手背后有政治阴谋,众家各执一词。我们只知道,在这场决斗中,伽罗华腹部中枪,不久后魂归天国。“不要哭,阿尔弗雷德!在二十岁死去,我需要我的全部勇气。”这就是他对弟弟说的最后一句话。而决斗前夕给他的朋友Chevalier的信,可以算是他对世界的遗言。信中密密麻麻地写着他的数学理论,他

7、正在思考的问题,他脑中的一切。他大概冀图某天,世界能够通过这封信,理解他。幸而,Chevalier实现了他挚友的意愿。伽罗华的理论,现在以他的名字命名:伽罗华理论。也就是这封信,吹响了一场百年战役的号角。构筑对称的砖块Z/6Z的一个Cayley图,其中可以看出它可分解为两个单群在伽罗华理论,乃至于更广泛的群的理论中,有一个很重要的概念:正规子群。我们以下只讨论那些只有有限个元素的群,它们被称为有限群。例如,魔方操作组成的群就是有限群,因为变化的可能性是有限的。而整数与加法组成的群则不是有限群,因为整数有无限个。在一个群里,有些元素自己会组成一个小圈子。它们并非不与外界交流,但无疑它们喜欢抱团:

8、小圈子内的元素经过运算得到的结果仍然在这个小圈子里,而它们的逆元也在小圈子里。简而言之,这个小圈子对于原来的运算也组成一个群。这样的小圈子,叫做群的子群。有些子群比别的子群更特别,它们不仅自己是一个群,如果“除”原来的群,得到的也是一个群。这样的子群叫做正规子群,而它们对原来的群作“除法”得到的群叫商群。首先观察到并提出正规子群这个概念的,正是伽罗华。通过研究更简单的正规子群和商群,我们可以得到群的很多性质。这就是数学家特别钟爱正规子群的原因。如果我们将正规子群和商群看成群的一种分解的话,那么必定有着不能被继续分解的群,我们将之称为单群。对于任意的有限群,我们可以将其分解成一串单群,而且这样的

9、分解是唯一的。单群在有限群论中的地位,跟素数在数论中的地位,还有原子在化学中的地位一样:它们都是构建它们所在世界的砖块。通过研究这些“砖块”,我们可以知道它们组成的各种结构的性质。如果能列出所有有限单群,就能从一个侧面了解所有离散的对称性的性质。有限单群就是这个故事的主角。与化学家当年寻找新元素的动机一样,数学家也开始了对有限单群的寻找。他们想做的跟化学家做的差不多:列一个单群的“元素周期表”。不过数学家要做的任务多了一项:证明这个“周期表”包含了所有的单群。这看起来不太容易,事实正是如此。转眼百年的长征Higman-Sims图,可导出散在单群Higman-Sims群伽罗华是寻找有限单群当之无

10、愧的第一人。是他首先发现所谓的交错群A_n对于所有n=5都是单群,从而不是可解群。正是从这个结果出发,他证明了高于五次的方程一般而言没有根式解。而数学家此前对数论的研究也容易导出另一族的单群:素数阶的循环群Z_p。它们也是唯一的交换单群,也就是说运算满足交换律(ab=ba)的单群。无需太纠结为何这些群取这样的名字。对于数学家而言,群就像是宠物,给宠物取的名字可能反映了宠物的性格,也可能是纯粹的趣味。但名字毕竟只是名字,只是称呼这些群的一种方式而已。像这样整个家族出现的单群,还有16族所谓的有限李群,它们可以看作离散域上的矩阵组成的群。对它们的系统化研究是由挪威数学家SophusLie开始的,所

11、以后人以此命名。而其中首先被发现的是所谓的射影特殊线性群PSL_n(q),其中q是一个素数的幂。在伽罗华生命最后的那封信上,就已经提到PSL_2(p)对于大于3的素数p是单群。后来Chevalley对其进行了更深入的研究,将其推广到一般的素数的幂。对于其余的15族有限李群,Chevalley也功不可没。除了这一共18个有限单群家族之外,还有26个单独存在的有限单群。它们不属于任何一个家族,而它们之间也没有一个统一的联系,三三两两各自放浪于数学天地之间。数学家给他们起了个相当适合的名字:散在单群。它们是单群中自成一派的例外。成家族出现的单群结构总是相似的,而散在单群却各有各的美丽。同时进行的则是

12、证明这就是所有的有限单群,这就是所谓的有限单群分类定理。如果将寻找单群比作在森林里抓兔子的话,有限单群分类定理的证明则是确保森林里所有的兔子都被抓光了。这就要求数学家对森林的地形也就是有限群的结构有一定的了解。从某种意义上,整个证明可以追溯到1872年的Sylow定理。这个定理不仅使数学家开始明白有限群更深层的结构,也为后来对各种群的分类讨论提供了武器。而真正明确提出对有限单群分类的,则是1892年的Hlder。他同时也证明了,每一个非交换有限单群的元素个数,是至少四个素数的乘积。从此开始便是百年的征程,对数学家更不利的一面是,出发的时候还不知道森林里有多少兔子要抓。事实上,分类定理的证明和对

13、有限单群的寻找,很大程度上是交错叠积的。有时是证明的途中,忽然找到了又一个新的有限单群;有时是对于已有的单群的研究启发了证明。这也是可以理解的,毕竟这是研究同一件事物的两条路径。所以,当1983年Gorenstein宣称有限单群分类定理被证明之时,群论学界可是欢呼雀跃。整个证明散落在各期刊的500多篇论文之中,合计过万页,每篇论文都对某种特殊情况进行了处理。将这些特殊情况合起来,覆盖了绝大多数的有限群类别,而Gorenstein认为,他的新论文恰好补上了仍未处理的那些有限群,从而完成了整个分类定理的证明。问题是,他弄错了。他以为一类名为“拟薄群”(quasi-thingroup)的类别已经被处

14、理好了,但事实上没有。直到2019年,由Aschbacher和Smith撰写的一篇一千多页的论文才将这个情况完全处理妥当,从而填补了这个漏洞。此时,有限单群分类定理,这个有限群理论的圣杯,才正式被圆满证明。18个有限单群家族,再加上26个散在单群,这就是所有的有限单群。从伽罗华开始历时一个多世纪,跨越两次世界大战的搜索,随着1976年最后一个散在单群被发现,2019年有限单群分类定理的最终证明,这场数学家和有限单群之间的捉迷藏游戏才告结束。这个列表,包含着数代数学家辛勤的汗水,大概还有不少的咖啡、粉笔、墨水和纸。故事仍未结束。在所有有限单群中,那些散在单群特别令人在意。成它们的出现看似无章可循

15、,没有什么必然的规律。但是,尽管有着“散在单群”这个名字,它们并非与世隔绝之徒。最有名的例子,莫过于那个最大的散在单群魔群(MonsterGroup)。意料之外的联系魔群是在1973年被Fischer和Griess分别独立发现的。虽然它是最大的散在单群,但它并不是最后一个被发现的。实际上,“魔群”这个名字就源于它庞大的体积。魔群的准确元素个数是808017424794512875886459904961710757005754368000000000,也就是大概8*1053个。与之相比,太阳系的原子个数也就是大约1057个,仅仅高了两个数量级。如果我们用线性空间和矩阵变换来表示魔群的话,我们至

16、少需要一个196883维的线性空间,才能忠实表达魔群的整体结构。这种表达方式又被称为群的线性表示。也正是由于魔群如此庞大,所以一开始数学家们并没有直接将它构造出来,而只能指出它的存在性。发现魔群的Griess,也要几个月后,才最终把魔群的元素个数计算出来。而魔群的直接构造,要等到9年后的1982年。那年,Griess提出了一个名为Griess代数的代数结构,而魔群恰好就是这个代数结构的自同构群。换句话说,魔群恰好刻画了Griess代数的所有对称性。值得一提的是,Griess代数的维度是196884,比196883多1。如果说每一族单群和每一个散在单群代表一种对称性的话,那么魔群一定有着非同寻常的对称性。体积如此庞大的群,却仍然是一个不可分解的单群,这本来就是个奇迹;而且与那些成系列的量产型单群不同,它的结

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 幼儿/小学教育 > 小学考试

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号