6.第六章激光在精密测量中的应用.doc

上传人:cl****1 文档编号:556239269 上传时间:2023-11-08 格式:DOC 页数:49 大小:2.32MB
返回 下载 相关 举报
6.第六章激光在精密测量中的应用.doc_第1页
第1页 / 共49页
6.第六章激光在精密测量中的应用.doc_第2页
第2页 / 共49页
6.第六章激光在精密测量中的应用.doc_第3页
第3页 / 共49页
6.第六章激光在精密测量中的应用.doc_第4页
第4页 / 共49页
6.第六章激光在精密测量中的应用.doc_第5页
第5页 / 共49页
点击查看更多>>
资源描述

《6.第六章激光在精密测量中的应用.doc》由会员分享,可在线阅读,更多相关《6.第六章激光在精密测量中的应用.doc(49页珍藏版)》请在金锄头文库上搜索。

1、第六章 激光在精密测量中的应用激光由于有优异的单色性、方向性和高亮度,使它在多方面得到应用。例如,激光在加工工业中被用来完成打孔、焊接、切割、快速成型,在医学中制造了激光手术刀、激光近视眼治疗仪、激光辐照仪,在IT产业中大量用来做光通讯、光存储、光信息处理的光源,在近代的科学研究中用于受控核聚变、光谱分析、操纵原子、诱导化学反应、乃至探索宇宙的起源,但是其最早期的应用还是在计量领域。尤其因为它可以与自然基准光的波长直接相联系,实现高精度测量,在长度测量领域得到了大量的应用。以下本书将要对激光在各方面的应用进行讨论,本章首先介绍激光在精密测量中的应用。激光的高度相干性使它一经发明就成为替代氪86

2、作为绝对光波干涉仪的首选光源,经过四十年的发展,激光干涉计量已经走出实验室,成为可以在生产车间使用的测量检定标准,激光衍射测量也成为许多在线控制系统的长度传感器。激光的良好方向性和极高的亮度不仅为人们提供了一条可见的基准直线,而且为长距离的光电测距提供了可能。激光同时具有高亮度和高相干性使得光的多普勒效应能够在测速方面得到应用。激光雷达则综合应用了激光的各方面的优点,成为环境监测的有力武器。6.1激光干涉测长干涉测量技术是以光的干涉现象为基础进行测量的一门技术。在激光出现以后,加之电子技术和计算机技术的发展,隔振与减振条件的改善,干涉技术得到了长足进展。干涉测量技术大多数是非接触测量,具有很高

3、的测量灵敏度和精度,而且应用范围十分广泛。常用的干涉仪有迈克尔逊干涉仪、马赫曾德干涉仪、菲索干涉仪、泰曼格林干涉仪22-24等;70年代以后,具有良好抗环境干扰能力的外差干涉仪,如双频激光干涉仪25-27、光纤干涉仪也很快的发展了起来。激光干涉仪越来越实用,其性能越来越稳定,结构也越来越紧凑。6.1.1 干涉测长的基本原理激光干涉测长的基本光路是一个迈克尔逊干涉仪(如图6-1示),用干涉条纹来反映被测量的信息。干涉条纹是接收面上两路光程差相同的点连成的轨迹。激光器发出的激光束到达半透半反射镜P后被分成两束,当两束光的光程相差激光半波长的偶数倍时,它们相互加强形成亮条纹;当两束光的光程相差半波长

4、的奇数倍时,它们相互抵消形成暗条纹。两束光的光程差可以表示为 (6-1)P光束1单模稳频He-Ne激光器光电计数器显示记录装置待测物体激光束光束2光电显微镜迈克尔逊干涉仪M1M2可移动平台图6-1 激光干涉测长仪的原理图式中分别为干涉仪两支光路的介质折射率;分别为干涉仪两支光路的几何路程。将被测物与其中一支光路联系起来,使反光镜M2沿光束2方向移动,每移动半波长的长度,光束2的光程就改变了一个波长,于是干涉条纹就产生一个周期的明、暗变化。通过对干涉条纹变化的测量就可以得到被测长度。被测长度与干涉条纹变化的次数和干涉仪所用光源波长之间的关系是 (6-2)式(6-2)是激光干涉测长的基本测量方程。

5、从测量方程出发可以对激光干涉测长系统进行基本误差分析 (6-3)式中分别为被测长度、干涉条纹变化计数和波长的相对误差。这说明被测长度的相对误差由两部分组成,一部分是干涉条纹计数的相对误差,另一部分是波长也就是频率的相对误差。前者是干涉测长系统的设计问题,不是本书研究的内容。后者除了与前面讲过的激光稳频技术有关之外还与环境控制,即对温度、湿度、气压等的控制有关。因此激光干涉测长系统测量误差必须根据具体情况进行具体分析。6.1.2 激光干涉测长系统的组成 除了迈克尔逊干涉仪以外,激光干涉测长系统还包括激光光源,可移动平台,光电显微镜,光电计数器和显示记录装置。激光光源一般是采用单模的He-Ne气体

6、激光器,输出的是波长为632.8纳米的红光。因为氦氖激光器输出激光的频率和功率稳定性高,它以连续激励的方式运转,在可见光和红外光区域里可产生多种波长的激光谱线,所以氦氖激光器特别适合用作相干光源。为提高光源的单色性,对激光器要采取稳频措施。可移动平台携带着迈克尔逊干涉仪的一块反射镜和待测物体一起沿入射光方向平移,由于它的平移,使干涉仪中的干涉条纹移动。光电显微镜的作用是对准待测物体,分别给出起始信号和终止信号,其瞄准精度对测量系统的总体精度有很大影响。光电计数器则对干涉条纹的移动进行计数。显示和记录装置是测量结果的输出设备,显示和记录光电计数器中记下的干涉条纹移动的个数及与之对应的长度,可以用

7、专用计算机或也可以用通用的PC机替代。迈克尔逊干涉仪是激光干涉测长系统的核心部分,其分光器件、反射器件和总体布局有若干可能的选择。干涉仪的分光器件原理可以分为分波阵面法、分振幅法和分偏振法。常用的分光器有分振幅平行平板分光器(图6-1)和立方棱镜分光器。其中立方棱镜分光器上还可以胶合干涉仪的其他元件,组成整体式干涉仪布局,能与系统的机座牢固连接减少误差。在偏振干涉仪系统中需要采用偏振分光器(参见图6-6B2),它由一对玻璃棱镜相胶合而成,在其中一块棱镜的胶合面上蒸镀偏振分光膜,得到高度偏振的S分量反射光和P分量透射光。偏振分光器也可由晶轴正交的偏光棱镜组成,如沃拉斯顿棱镜。干涉仪中常用的反射器

8、件中最简单的是平面反射器,这种器件的偏转将产生附加的光程差,在采用多次反射以提高测量精度的系统或长光程干涉仪中此项误差不可忽略。角锥棱镜反射器(图6-2a)的反射光与入射光反向平行,具有抗偏摆和俯仰的性能,可以消除偏转带来的误差,是干涉仪中常用的器件。直角棱镜反射器(图6-2b)只有两个反射面,加工起来比较容易,并只对一个方向的偏转敏感。猫眼反射器(图6-2c)由一个透镜L和一个凹面反射镜M组成,反射镜放在透镜的焦点处,若反射镜的曲率中心C与透镜的光心C重合,当透镜和反射镜一起绕着C旋转时,光程保持不变。猫眼反射器的优点是容易加工和不影响偏振光的传输,而且在光程不太长时还可以用平面反射镜代替凹

9、面反射镜,更容易加工与调整。ABCOEF正入射斜入射LMCC(a)(b)(c)图6-2 (a) 角锥棱镜反射器;(b) 直角棱镜反射器;(c) 猫眼反射器 激光干涉仪光路的总体布局也有若干可能的选择。在激光干涉仪光路设计中,一般遵循共路原则,即测量光束与参考光束尽量走同一路径,以避免大气等环境条件对两条光路影响不一致而引起的测量误差。典型光路布局有使用角锥棱镜反射器的常用的光路布局,如图6-3示。图6-3a中角锥棱镜可使入射光和反射光在空间分离一定距离,这种光路可避免反射光束返回激光器,以免返回光束引起激光输出频率和振幅的不稳定。角锥棱镜具有抗偏摆和俯仰的性能,可以消除测量镜偏转带来的误差。但

10、是这种成对使用的角锥棱镜要求配对加工,而且加工精度要求高,因此也可采用一个角锥棱镜作为可动反射镜(图6-3b)。参考光路中还可用平面反射镜作固定反射镜。使用一个角锥棱镜作可动反射器还可采用其他几种光路。如图6-3c所示的双光束干涉仪,它也是一种较理想的光路布局,基本上不受镜座多余自由度的影响,而且光程增加一倍。其它光路布局还有整体式布局、光学倍频布局、零光程差的结构布局等,各有其特点和用途。(a)(b)(c)图6-3 (a) 双角锥棱镜光路;(b) 单角锥棱镜光路;(c) 双光程光路激光干涉测长系统的另一个重要组成部分是干涉条纹计数与测量结果处理系统。干涉仪在实际测量位移时,由于测量反射镜在测

11、量过程中可能需要正反两个方向的移动,或由于外界振动,导轨误差等干扰,使反射镜在正向移动中,偶然有反向移动,所以干涉仪中需设计方向判别部分,将计数脉冲分为加和减两种脉冲。当测量镜正向移动时所产生的脉冲为正脉冲,而反向移动时所产生的脉冲为减脉冲。将这两种脉冲送入可逆计数器进行可逆计算就可以获得真正的位移值。如果测量系统没有判向能力,光电接收器接收的信号是测量镜正反两方向移动的总和,就不代表真正的位移值。另外为了提高仪器分辨力,还要对干涉条纹进行细分。为达到这些目的,干涉仪必须有两个位相差为90度的电信号输出,一个按光程的正弦变化,一个按余弦变化。所以,移相器也是干涉仪测量系统的重要组成部D1D2B

12、M2M1M2ID1D2图6-4 机械法移相原理图分。常用的移相方法有机械移相(图6-4),翼形板移相,金属膜移相和偏振法移相。干涉条纹计数时,通过移相获得两路相差/2的干涉条纹的光强信号,该信号经放大,整形,倒向及微分等处理,可以获得四个相位依次相差/2的脉冲信号(图6-5)。若将脉冲排列的相位顺序在反射镜正向移动时定为1、2、3、4,反向移动时定为1、4、3、2;后续的逻辑电路便可以根据脉冲1后面的相位是2还是4判断脉冲的方向,并送入加脉冲门或减脉冲门,便实现了判向的目的。同时经判向电路后,将一个周期的干涉信号变成四个脉冲输出信号。实现干涉条纹的四倍频计数,相应的测量方程变为 (6-4)66

13、1233445566789sincossin-sin-coscos21431干涉条纹;2移相系统;3光电接收器;4放大器;5倒相 6微分电路;7可逆计数器;8计算机;9显示器图6-5 判向计数原理6.1.3 激光外差干涉测长技术 激光的发明和应用使干涉测长技术提高了精度,扩大了量程并且得到了普及,但是使干涉测长技术走出实验室进入车间,成为生产过程质量控制设备的是激光外差干涉测长技术,具体来讲就是双频激光干涉仪。激光干涉仪产生的干涉条纹变化频率与测量反射镜的运动速度有关,在从静止到运动再回到静止的过程中对应着频率从零到最大值再返回到零的全过程,因此光强转化出的直流电信号的频率变化范围也是从零开始

14、的。这样的信号只能用直流放大器来放大处理。但是在外界环境干扰下,干涉条纹的平均光强会有很大的变化,以至于造成计数的错误。所以一般的激光干涉仪抗干扰能力差,只能在恒温防振的条件下使用。为了克服以上缺点,可以在干涉仪的信号中引入一定频率的载波,使被测信号通过这一载波来传递,使得干涉仪能够采用交流放大,隔绝外界环境干扰造成的直流电平漂移。利用这种技术设计的干涉仪称作外差干涉仪,或交流干涉仪。产生干涉仪载波信号的方法有两种,一种是使参与干涉的两束光产生一个频率差,这样的两束光相干的结果会出现光学拍的现象,转化为电信号以后得到差频的载波,另一种是在干涉仪的参考臂中对参考光束进行调制,与测量臂的光干涉直接生成载波信号。前者称为是光外差干涉,而后者常常称作是准外差干涉。本节以前一种原理的双频激光干涉仪为主来介绍激光外差干涉测长技术。双频激光干涉仪的光路如图6-6所示,其中氦氖激光器上沿轴向施加以磁场,由于塞曼效应激光被分裂成有一定频率差的左旋偏振光和右旋偏振光(常用的双频激光干涉仪把这一频差设计成)。通过1/4波片后,和变成相互垂直的线偏振光,又被分束镜分成两束,其中一束反射到主截面与相互垂直的两线偏振光偏振方向成45的检偏器,产生拍频信号。光电探测器对两倍光频的和频信号没有响应,接收到的只是频率为的参考差频信号。另一束光透过分束镜向前传播

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲 > 社会民生

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号