笔记本电脑外壳工艺.doc

上传人:ni****g 文档编号:556219466 上传时间:2023-09-23 格式:DOC 页数:12 大小:42.01KB
返回 下载 相关 举报
笔记本电脑外壳工艺.doc_第1页
第1页 / 共12页
笔记本电脑外壳工艺.doc_第2页
第2页 / 共12页
笔记本电脑外壳工艺.doc_第3页
第3页 / 共12页
笔记本电脑外壳工艺.doc_第4页
第4页 / 共12页
笔记本电脑外壳工艺.doc_第5页
第5页 / 共12页
点击查看更多>>
资源描述

《笔记本电脑外壳工艺.doc》由会员分享,可在线阅读,更多相关《笔记本电脑外壳工艺.doc(12页珍藏版)》请在金锄头文库上搜索。

1、【科普】笔记本外壳材料 之二 “羞涩”的铝合金笔记本外壳材料 之二 “羞涩”的铝合金虽然标题如此,本部分准备介绍两种常用于笔记本外壳的合金材料,也是最为典型的轻合金铝合金和镁合金。铝合金大家耳熟能详,实在是一种烂大街的东西。现在对生活追求高些的人们,家里日用东西一概不用塑料,要么不锈钢,要么铝合金,甚至连铝合金都感觉低档。实际上塑料如果做得好,其性能、外观、手感绝对不逊于金属制品。不过国内塑料日用品大多是低档到不行而已。题外话,不算字数,哈哈。老实说,搞这么个系列性的东西还是有些托大了。毕竟对笔记本机壳,对真东西研究得实在少到不值一提,到底哪些型号用了是铝合金,哪些用了镁合金,都分别在哪些部位

2、用的,用得哪种型号的合金,实在是找不到资料,也没弄来样品做过分析。所能做的,只能是通过从事材料学专业教学研究几年来的一点粗陋的认识,对人们常见的误解,对公关文案上常见的花火做些辨别而已,希望博乐于阅读技术性文字的朋友一乐。从何说起呢?实在提不出个头绪来,还是先讲古吧。铝是年轻的元素,从发现到现在不到200年,从成功炼出铝块(早期在实验室里得到的都是粉末或小球)到现在不过一百五六十年。从产业化的电解炼铝法发明算,更仅有一百二十多年。要是从德国人阿弗列威尔莫发明硬铝,给了柔弱的铝一副坚硬的筋骨,把它从庙堂请到车间,直接推动了航空、汽车、电力、建筑等重要工业的发展算起,也就将将一百多年,但是铝极大地

3、改变了世界的面貌。二十世纪,是铝的世纪。没有铝就没有现代意义的航空工业,没有航空工业,就没有我们现在耳熟能详习以为常的思维和生活方式。铝质轻,比重2.7左右,即便与更重的元素,如铜、锌等合金化后,比重增大也不多。如果大量加入锂后,比重甚至会降到2.0以下,比很多碳纤维和很多塑料都要轻。纯的铝是很软的,延展性极好,但是强度不足以作为制造设备和零件的结构材料。但是加入其他元素形成合金之后,利用溶解度随温度的变化,使这些高温能完全与铝形成溶液(当然是固态的溶液,材料科学上叫做固溶体)的合金元素(例如常用的二系铝合金中的铜),在低温(指低到常温范围内)下沉淀出来,形成沉淀相(叫法很乱,也有叫二次相的)

4、。当然这个沉淀相的出现并不是说都像液体溶液中析出的沉淀那样都沉到底部。在固体溶液中析出的沉淀相自然不可能受重力作用都沉到铝合金锭子的底部,实际上它们会弥散地分布于铝合金内部组织各处。这些沉淀相会阻碍合金受力作用(如拉伸力、压缩力、扭转力、剪切力等)时,不同部位之间的相对滑移,使材料对载荷(实际上是对载荷引起的形变)表现出更大的抵抗力,我们就说材料有更高的强度。这就是铝合金的强化原理沉淀强化。当然某些铝合金中也存在另外一种强化机制固溶强化,但是相对于沉淀强化作用较次要,也较少见。解释起来又麻烦,恕我偷懒掠过了。沉淀强化的实际效果需要温度的配合,也就是说把合金元素加到液态铝中浇成锭子还不算完,就像

5、其他合金材料那样,还要经过合理的热处理才能获得理想的综合性能。对沉淀强化铝合金而言,其热处理通常采用固溶+淬火+时效。抱歉,又出专业名词了。简单地说,固溶就是加热,让沉淀相(特别是分布得不理想的沉淀相)重新溶解,使整个大块材料重新变成一个均匀的固体溶液。形成固体溶液之后,浸入水,或专用淬火药剂中淬火(淬火都应该知道吧)。淬火的目的是用激冷把固体溶液强制保持到低温。而随后的时效就是让处于不稳定状态的过饱和固体溶液在人为控制的温度(这个温度一般不会超过200度)下保持一段时间(时间长短视最终要求的性能而定),在这段时间内,过饱和固体溶液中的合金元素,其超过该温度下溶解度的那部分就会以沉淀相的形式析

6、出来,析出越均匀,强化效果越理想。铝合金,包括其他常用结构金属元素的合金化是历久弥新的研究和发展领域。毕竟影响因素多不胜多,平平常常就能想到的,合金元素的种类和相对比例、热处理各阶段的温度、时间等,这就多少个参数了。而且冶金研究经常要在高温工况下测量,对设备要求高,人也受累。材料的力学、理化性能检测又是另一个大工程。比如航空发动机上用的那些材料,那一个的技术要求不是几百个参数。所以一个新的合金,哪怕是老合金的新热处理工艺的研发成功,都是了不起的成果。糟糕糟糕,一不留神又扯远了。赶紧回头,说笔记本吧。现在笔记本外壳用金属材质(或金属基体里嵌纤维这个内容放到第四部分纤维复合材料里介绍)的,莫不宣传

7、自己用的是“镁合金”,至少是“镁铝合金”。果真?果然?当初笔记本上用镁合金,甚至是外壳用镁合金的概念刚流行时,我也曾经怀疑,嗤之以鼻过,逢人就给人纠正:“什么镁合金,不过是高镁含量的铝合金罢了!噱头,一切都是噱头!”为什么我当初那么坚决地否认一切镁合金应用的宣传呢?基于以下几点似是而非的认识:一、“镁(及其合金)耐腐蚀性差呀!”这确实是有道理的。镁、铝和钛并称为三大轻金属,它们的合金并称三大轻合金系列。但是从各方面看铝更像钛,它们的耐腐蚀性都很好,原因在于它们在通常条件下表面都存在一种“钝化”的作用。简单地说,就是这两种金属及其合金的表面存在一层极薄,但是极稳定致密,与基体金属结合极好,同时又

8、有自修复效果的氧化物(对钛而言,还有一部分氮化物,因为钛可以与空气中的氮气自发地反应,而铝则不能)膜,这层膜起到了阻挡或隔绝外部侵蚀性环境因素的作用。镁则是另外一种情况。镁虽然性质也极活泼,用刀切开镁块,铮亮的新断口很快就变暗变糊了,就是快速地与空气中的氧(可能还有水,至少吸附水会起一定的促进作用。这里水深高人多,话还是不要说太绝对得好)反应成膜。但是这个膜层结构不好,它是疏松多孔的。不光不能起到隔绝防护作用,反而会因其多孔更加容易吸附水汽,加剧基体金属材料的氧化损失也就是发生了腐蚀。正因为镁合金的严重的腐蚀倾向,现在至少国内的军机和波音的新型号民机都禁止在结构部位使用镁合金(其他的器材,比如

9、电子附件盒等等用镁合金的还是很多的)。其他的民用领域,比如汽车,因为没有像飞机那么变态的可靠性要求(当然一旦不可靠了,死人的风险对当事人而言无论多低都是不可接受的),只要想办法做好表面处理,腐蚀防护,镁合金因其比重轻(1.8左右,比铝轻1/3),强度方面还可以接受所带来的减重、节油、安全等好处还是值得过的。比如国产桑唐纳轿车从2000型开始就使用镁合金铸造的油箱了。但是啊但是,当初就是只知其一不知其二,总感觉镁合金氧化物生得不好,应该不会像铝合金那样可以方便地通过阳极氧化(后面马上说到)获得优良的耐腐蚀性。其实则不然,镁合金的阳极氧化早就是成熟技术。甚至有一种更加简便,效果也不错的表面处理方法

10、,叫做微弧氧化的工艺,乌克兰人早就连设备都卖到哈尔滨了。我师兄后来也开始做微弧氧化,当然是自己攒设备土法上马,但是确实工艺简单得要死,效果却好得要死。科学研究,知难行易,张教授诚不我欺也!二、“镁合金贵呀!”其实也没多贵的。镁储量极丰,海水、盐湖水抽上来,把氯化镁分出来,跟铝一样电解就是。刚随便在google上查了查所谓“媒体价”,国内最常用的镁合金AZ91D(是一种含Zn和Al的镁合金)按吨走的价格平均到1公斤是32块钱,而最常用的铝镁合金ZL30x系列公斤价是68元。当然这个比较是不大可靠的,但是应该说镁合金就算贵也不会比铝合金贵太多。当然现在镁合金的使用也逐渐多起来了,价格或许会逐渐走高

11、也说不定。所以啊所以,当我在51nb上看t60拆解照片,结结实实地看到防滚架和A壳上的“cast Mg”(铸镁)字样时,我惊愕:我错了!我傻了!我土了!其实联想到大和的传统,以及日系轻薄本一贯追求极致的作风,又怎会对镁合金的应用视而不见呢?6x系列上随roll cage大方登场的镁合金可能已经是迟到了。那么,话说回来,到底有没有“高镁铝合金”用到笔记本外壳上呢?惭愧,还是了解甚少。或许现在就有,或许曾经有过,也大多淹没在泛滥的公关文案当中而不可考了。特别是在表面防护问题的解决使镁合金大行其道的今天,铝合金会永远没有大大方方出头的日子了吧?先是被跑龙套的(或许这样说不太公平,反正就是一乐,这个请

12、别太较真)钛,后是被镁给抢了风头,换我也羞死了!但是,幸亏这世界还有Apple。Apple用铝合金是有优良传统的,人家用铝合金就大大方方告诉你是铝合金。说到这里,或许应该提醒下大家,Apple的powerBook G4可是有过Titanium系列的,不过这个Titanium是不是货真价实估计也不可考察了。毕竟IBM时代的ThinkPad和Apple都是小众产品(lenovo的TP有“卖”向大众的意思,但是黑迷却不太领情似的,人心难测),甚至笔记本都是小众产品,对普罗大众来说,了解笔记本、了解tp或Apple、下决心掏两倍以上的银子购买,心理上要跨越三大步才能到位。所以这Titanium,或许将

13、永远如那传说里的神祗一样,只有被人顶礼膜拜的份了吧。为何Apple义无反顾地用铝呢?简单分析一下不难发现,Apple的powerbook其机壳设计简洁到寒酸,哪像tp掉过底来,又是折角又是台阶的。形体越简单,就越容易通过模锻(就是在模具中锻造)来成型,否则细节太多模具寿命会短到无法接受。而用压铸的办法生产铝合金,特别是笔记本机壳这种质量要求比较高的产品,因为铝合金熔点还是太高(纯铝的在660多度,铸造用合金要低些),高温下活泼的液态金属氧化,造成铸件氧化物夹杂的问题不太容易避免,废品率会比较高(这些属于不负责任的揣测了笔者谨注并向专家求证),能耗方面相对锻造也不合算。当然用镁合金铸造也会有这方

14、面的问题。锻造,则限制机壳设计,铸造,则工艺问题多。没有两全其美,看哪个更加适合设计理念吧。镁合金这种东西的腐蚀问题终究是它最大的罩门。镁合金的应用一直以来是受到腐蚀防护技术的限制。直到前一二十年,随着阳极氧化的应用和微弧氧化的发展,厂商才敢大大方方地用镁。所以你看那些卡片DC一个赛一个地比着轻薄,一大部分原因都是因为用了镁合金做壳。 那么这个阳极氧化、微弧氧化到底是什么意思?不知道各位对电解知道多少。现在至少有点化学基础的人,平时略微留点心应该会知道氯化钠,也就是我们吃的食盐中最主要的成分,另一个最大的用途就是用来电解,生产非常有用的两种无机化工原料氢氧化钠(俗称烧碱)和氯气,同时还能副产氢

15、气。其过程就是在食盐水槽子里头插两根钛或钌或铑或其他惰性材料制成的电极,电极分别接到强大的直流电源(汇流排都是小孩胳膊粗的)的正负极上,槽压加上去,连电源负极的那个电极(这里一般称为阴极)提供的电子就把水中的一个氢离子还原出来,两个氢原子合并成氢气,从阴极室跑出来。另外一端的阳极(也就是接电源正极的那个电极)从氯化钠解离出来的氯离子那里强行夺走电子,把它氧化成氯气,从阳极室里跑出来。这种过程,或工艺就叫做电解。如果电解能明白,阳极氧化就简单了。其实就是把电解食盐水的两个电极中,其中作为阳极(也就是连接电源正极的那个)的材料换成要处理的铝合金或镁合金零件就是了。另一端随便用个碳或不锈钢做阴极,反

16、正是被电源负极供来的电子保护着,不会受到溶液的腐蚀。当然槽子里的溶液就不能用食盐水了,要换成专用配方的电解质溶液。电流强度也要根据处理的零件的裸露面积调节。这样,在合适的电流密度、温度和电解质溶液提供的化学环境构成的组合工艺参数下,给槽子(或者说给零件)通一段时间的电,就会发现裸金属铮亮的外观变成乌突突毛糙糙的样子了(可能说得严重了,但是确实很难准确形容阳极氧化膜的外观),这就是生成了阳极化膜的结果。阳极化膜生长的过程,正如其他很多用到烂大街的化学反应一样,说法并未完全统一,仍有一些模糊之处,当然这并不妨碍我们放心大胆地用它们,自然也不妨碍我在这里大嘴胡说了。科学技术哪有那么多弄得清楚明白的,真理姑娘身上最后一件贴身小衣服是永远可望不可即的。量子力学严密了那么多年,到了还不是让海森堡弄出一个测不准原理,大伙就都老实了?

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲 > 科普知识

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号