专题__天体问题.doc

上传人:汽*** 文档编号:554884366 上传时间:2023-10-13 格式:DOC 页数:11 大小:311.41KB
返回 下载 相关 举报
专题__天体问题.doc_第1页
第1页 / 共11页
专题__天体问题.doc_第2页
第2页 / 共11页
专题__天体问题.doc_第3页
第3页 / 共11页
专题__天体问题.doc_第4页
第4页 / 共11页
专题__天体问题.doc_第5页
第5页 / 共11页
点击查看更多>>
资源描述

《专题__天体问题.doc》由会员分享,可在线阅读,更多相关《专题__天体问题.doc(11页珍藏版)》请在金锄头文库上搜索。

1、 天体问题专题 一、存在问题。运用万有引力定律、牛顿运动定律、向心力公式等力学规律求解天体(卫星)运动一直是高考命题频率较高的知识点。要重视这类问题分析的基本规律。解决本单元问题的原理及方法比较单一,应该不难掌握,但偏偏有相当多的学生颇感力不从心,原因何在?1、物理规律不到位,公式选择无标准。2、研究对象找不准,已知求解不对应。3、空间技术太陌生,物理情景不熟悉。4、物理过程把不准,物理模型难建立。二、应对策略。1、万有引力提供向心力。设圆周中心的天体(中心天体)的质量为M,半径为R;做圆周运动的天体(卫星)的质量为m,轨道半径为r,线速度为v,角速度为,周期为T,万有引力常数为G。则应有:r

2、R0= =m =m()2=mg (g表示轨道处的重力加速度) 注意:当万有引力比物体做圆周运动所需的向心力小时,物体将坐离心运动。 2、在中心天体表面或附近,万有引力近似等于重力。G=mg0 (g0表示天体表面的重力加速度)注意:在研究卫星的问题中,若已知中心天体表面的重力加速度g0时,常运用GMg0R2作为桥梁,可以把“地上”和“天上”联系起来。由于这种代换的作用巨大,此时通常称为黄金代换式。三、在一些与天体运行有关的估算题中,常存在一些隐含条件,应加以运用。在地球表面物体受到的地球引力近似等于重力。在地球表面附近的重力加速度g=9.8ms2。地球自转周期T=24h地球公转周期T=365天。

3、月球绕地球运动的周期约为30天。四、应用举例1、天体的运动规律。由可得: r越大,V越小。由可得: r越大,越小。由可得: r越大,T越大。由可得: r越大,a向越小。E= EK+ EP=mv2+mgh 若高度增大则有其它形式的能转化为卫星的机械能,故E增大。1、设人造地球卫星绕地球作匀速圆周运动,卫星离地面越高,则卫星的:( )A、速度越大 B、角速度越大 C、向心加速度越大 D、周期越长2、三颗人造地球卫星A、B、C绕地球作匀速圆周运动,如图所示,已知mA=mBVB VC 周期关系为TATB=TC向心力大小关系为FA=FBFC 半径与周期关系为=A、 B、 C、 D、 3、利用下列哪些数据

4、,可以计算出地球的质量( )A、已知卫星绕地球做匀速圆周运动的轨道半径r和周期T.B、已知卫星绕地球做匀速圆周运动的轨道半径r和周期v.C、已地球绕太阳做匀速圆周运动的轨道半径r和周期T.D、已知地球的半径R和地面的重力加速度g.R0rAB4、2002年3月25日,我国成功地发射了“神舟3号”载人试验飞船,经过6天多的太空运行,试验飞船收舱于4月1日顺利地返回地面。已知飞船在太空中运行的轨道是个椭圆,地球的球心是椭圆的一个焦点,如图所示,飞船在运行是无动力飞行,只受到地球对它的万有引力作用,在飞船从轨道的A点沿箭头方向运行到B点的过程中,有以下说法,正确的是:( )飞船的速度逐渐减小。 飞船的

5、速度逐渐增大。飞船的机械能守恒。 飞船的机械能逐渐增大。A、 B、 C、 D、5、天文上曾出现几个行星和太阳在同一直线上的现象,假设地球和火星绕太阳的运动可看做匀速圆周运动,周期分别是T1和T2,它们绕太阳运动的轨道基本在同一水平面内若在某一时刻,地球和火星都在太阳的一侧,且三者在同一直线上,那么再经过多长的时间,将再次出现这种现象?已知地球离太阳较近 A、 B、 C、 D、6、侦察卫星在通过地球两极上空的圆轨道上运行,它的运行轨道距地面的高度为,要使卫星在一天的时间内将地面上赤道各处在日照条件下的情况全都拍摄下来,卫星在通过赤道上空时,卫星上的摄像机至少应拍摄地面上赤道圆周的弧长是多少?已知

6、地球的半径为,地面处的重力加速度为,地球自转的周期为。 解:对地面附近的物体: 对侦察卫星: W0卫星绕地一周,经过处于白昼的赤道上空只能拍摄一次照片,故卫星一天拍摄照片的次数为: 设卫星上的摄像机一次拍摄到的赤道上圆弧的长度为,则有: 由解得: 2、地球同步卫星说明:一般卫星与同步卫星运行轨道的区别:由于卫星作圆周运动的向心力必须由地球给它的万有引力来提供,所以所有的地球卫星包括同步卫星,其轨道圆的圆心都必须在地球的的球心上。同步卫星是跟地球自转同步,故其轨道平面首先必须与地球的赤道圆面相平行。又因做匀速圆周运动的向心力由地球给它的万有引力提供,而万有引力方向通过地心,故轨道平面就应与赤道平

7、面相重合。一般卫星的轨道平面、周期、角速度、线速度、轨道半径都在一定的范围内任取。而同步卫星的周期、角速度、线速度、轨道半径都是确定的。二者的质量(动能、势能、机械能)都不确定。1、(广西高考)某颗地球同步卫星正下方的地球表面上有一观察者,他用天文望远镜观察被太阳光照射的此卫星,试问,春分那天(太阳光直射赤道)在日落12小时内有多长时间该观察者看不见此卫星?已知地球半径为R,地球表面处的重力加速度为g,地球自转周期为T,不考虑大气对光的折射。解析:设所求的时间为t,用m、M分别表示卫星和地球的质量,r表示卫星到地心的距离,有: 春分时,如图所示,圆E表示轨道,S表示卫星,A表示观察者,O表示地

8、心,由图可以看出当卫星S绕地心O转到图示位置以后(设地球自转是沿图中逆时针方向),其正下方的观察者将看不见它,据此再考虑对称性,有阳光OAS 由以上各式解得 3、天体的估算1、2003年10月15日,我国成功发射了第一艘载人宇宙飞船“神舟五号”酒泉卫星发射中心发射成功,飞船进入预定轨道环绕地球飞行14圈用时23h,行程6.27105km.假设飞船运行的轨道是圆形轨道。已知地球半径R=6.4103km(引力常量G未知)求地球表面的重力加速度?2、火星和地球绕太阳的运动可以近似看作同一平面内同方向的运速运周运动。已知火星的轨道半径r火=1.51011m,地球的轨道半径r地=1.01011m,从如图

9、所示的火星与地球星距最近的时刻开始计时,估算火星再次与地球相距最近需多少地球年?(保留两位有效数字)火星地球太阳4、超重和失重 人造地球卫星在发射过程中有一段向上加速运动阶段,在返回地球时有一个减速阶段,这两个过程都处于超重状态。人造地球卫星进入轨道作匀速圆周运动时,由于万有引力完全提供向心力,人造卫星及内面的物体都处于完全失重状态.5、卫星的发射与回收1、发射通讯卫星的常用方法是:先用火箭将卫星送入一级近地轨道运行,然后再适时开动运载火箭,经过过渡轨道将其送入与地球自转同步的运动轨道,则变轨后与变轨前( )A、机械能增大,动能减小B、机械能减小,动能增大C、机械能增大,动能增小D、机械能减小

10、,动能减小2、宇宙飞船要与轨道空间站对接,飞船为了追上轨道空间站( )A只能从较低轨道上加速。 B只能从较高轨道上加速C只能从空间站同一高度轨道上加速 D无论从什么轨道上加速都可以3、发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3。轨道1、2切于Q点,轨道2、3相切于P点,如图2所示,则当卫星分别在1、2、3 轨道上正常运行时,以下说法正确的是:( ) 13PQ2A.卫星在轨道3上的速率大于在轨道1上的速率B.卫星在轨道3上的角速度小于在轨道1上的角速度C.卫星在轨道1上经过Q点时的加速度大于它在轨道2上经过Q点时的加速度

11、D.卫星在轨道2上经过P点时的加速度等于它在轨道3上经过P点的加速度3、宇航员在某一行星上以速度v0竖直上抛一个物体,经t秒后落回手中。已知该行星的半径为R。若在该星球上离地高h处,以初速度v0平抛一物体,水平射程为多少?要使物体沿水平方向抛出而不落回星球表面,沿星球表面的抛出速度至少应为多大? 解析:当平抛物体的初速度不太大时,在平抛物体运动的范围内,地面可看作是水平的,重力加速度的大小不变、方向始终垂直于水平面。如果平抛物体的初速度很大,其射程就会很远,重力加速度的大小和方向就要变化,就不可能作平抛运动。1、设在地面附近的重力加速度为g,由于物体做竖直上抛运动:0R-V0=V0-gt 即g

12、=若物体作平抛运动有:X=v0t h=gt2 所以x= 2、要使物体不落回星球表面,就要求万有引力完全提供向心力,而在星球表面附近,重力约等于万有引力。故:mg= 由得:v= 4、某物体在地面上的重力为160N,现将它放置在卫星中,在卫星以加速度a=g随火箭加速上升的过程中,当物体与卫星中的支持物的相互挤压力为90N时,求此时卫星距地球表面有多远?(地球半径R6.4103km,取重力加速度g=10ms2)解析:因为卫星在加速上升的过程中,卫星内的物体与卫星的相互挤压力小与其地面上重力,故应该考虑由于高度的变化而引起的重力加速度的变化。设此时火箭离地球表面的高度为h,火箭受到的支持力为N,物体受

13、到的重力为mg,由牛顿第二定律得:mgNNmgma 在h高处:mg 在地球表面处:mg 由得:h=R(-1)=1.92104km 5、设想宇航员完成了对火星表面的科学考察任务后,乘坐返回舱返回围绕火星作匀速运周运动的轨道舱,如图所示。为了安全,返回舱与轨道舱对接时必须具有相同的速度。已知返回舱与人的总质量为m,火星表面的重力加速度为g,火星的半径为R,轨道舱到火星中心的距离为r,返回舱返回过程中需要克服火星引力做功W=mgR(1-),不计火星表面大气对返回舱的阻力和火星自转的影响,则该宇航员乘坐的返回舱至少需要获得多少能量才能返回轨道舱? 解析:设轨道舱的质量为m0,速率大小为v。= rR0 返回舱与人在火星附近。 =mg EK=mv2 W=mgR(1-) E=EK+W 由得E=mgR(1-)12、阅读下列信息,并结合该信息解题。 开普勒在19091919年发表了著名的开普勒行星三定律: 第一定律:所有行星分别在大小不同的椭圆轨道上围绕太阳运动,太阳在这个椭圆的一个焦点上。开普勒第一定律又叫轨道定律。第二定律:太阳和行星的连线在相等的时间内扫过的面积相等。开普勒第二定律又叫面积定律

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 幼儿/小学教育 > 小学课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号